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Abstract

The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer
products and their corresponding use in occupational settings have raised concerns over the
potential for metals to induce size-specific adverse toxicological effects. Although nano-metals
have been shown to induce greater lung injury and inflammation than their larger metal
counterparts, their size-related effects on the immune system and allergic disease remain largely
unknown. This knowledge gap is particularly concerning since metals are historically recognized
as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy.
The investigation into the potential for adverse immune effects following exposure to metal
nanomaterials is becoming an area of scientific interest since these characteristically lightweight
materials are easily aerosolized and inhaled, and their small size may allow for penetration of the
skin, which may promote unique size-specific immune effects with implications for allergic
disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly
influence their interactions with components of biological systems, potentially leading to
implications for inducing or exacerbating allergic disease. Although some research has been
directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune
effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for
metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease.
Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more
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thoroughly-characterized than their potential influence on dermal allergy. Current knowledge
regarding metal nanomaterials and their potential to induce/ exacerbate dermal and respiratory
allergy are summarized in this review. In addition, an examination of several remaining knowledge
gaps and considerations for future studies is provided.
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Introduction

Over the past several decades, an extensive amount of scientific attention has been invested
in the field of nanotechnology. Significant advances have been made in understanding the
unique behaviors of matter with nano-scale dimensions. This progress has facilitated the
capacity for manipulation of material properties to optimize their functional utility.
Subsequently, nanomaterials have proven useful in diverse applications ranging from
pharmaceutics and energetics to transportation and electronics. The exponential growth of
the nanotechnology field has left few sectors unaffected by its momentum, as the global
nanotechnology market has been valued at over $20 billion US (Nanomaterials Future
Markets 2015). Although the resounding impact of these technological advancements has
generated comparisons to the impact of the industrial revolution, the expansion of
nanotechnology has also generated several notable concerns. In addition to the
environmental, legal, ethical, and regulatory challenges imposed by the expanding presence
of nanotechnology, the potential risk for adverse health effects following exposure to
nanomaterials has also become a major concern.

As a result, a unique discipline of toxicology has emerged to evaluate the potential health
effects of nanomaterials. Nanotoxicology studies have consistently demonstrated that the
unique properties of nanomaterials that render their industrial functionality also implicate
unique interactions with biological systems. A general correlation between decreasing size
and increased toxic potential has been observed for many nanomaterials (Shang et al. 2014).
However, additional physical and chemical properties of nanomaterials have been implicated
in their biological activity. Nanomaterials exist in various morphologies (Figure 1) with
diverse surface textures, and can assume differing degrees of agglomeration. These physical
properties contribute to variations in their chemical properties, which include surface charge,
dissolution kinetics, and surface reactivity (Oberdorster et al. 2005; Castranova 2011; Gatoo
etal. 2014).

One of the greatest challenges presented to nano-toxicologists arises from the discord
between the rapid emergence of vast quantities of new nanomaterials and the significant
amount of time and resources required to evaluate the safety of each material individually. A
novel risk assessment approach proposed to mitigate this issue involves delineation of
relationships between specific physicochemical properties and toxicological modes of action
(Kuempel et al. 2012; Braakhuis et al. 2016). Subsequently, emerging materials can be
categorized by this scheme, providing preliminary safety information and prioritization of
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resources for /in vivo studies (Schulte et al. 2014). Significant advancements have been made
using this approach with respect to toxic effects on the lungs, but the correlation of
nanomaterial physicochemical properties with adverse effects on other systems, such as the
immune system, are less clear.

In addition to protecting the host from both endogenous and exogenous threats, the immune
system is a critical regulator in hundreds of other disorders, as inflammation is a critical
component in the pathophysiology of nearly all chronic diseases states (Pawelec et al. 2014).
Accordingly, deviations in optimal immune functioning can have resounding effects on host
health, whether polarized towards being either stimulatory or suppressive in nature. One of
the immunological disorders presenting a significant and continually expanding global
public health burden is allergy. The term “allergic disease” refers to a collective assortment
of disorders involving diverse inciting agents, underlying immunological mechanisms, and
clinical manifestations. However, all hypersensitivity disorders are characterized by
commonality in hyperactivation of adaptive immune responses directed at otherwise
innocuous exogenous antigens (Pawankar 2014).

Rates of allergic disease have been on the rise for decades, and the American Academy of
Allergy, Asthma, and Immunology reports that worldwide, sensitization rates to one or more
common allergens are approaching 40-50% in school-aged children (AAAAI 2015). In the
United States, allergic diseases are the sixth leading cause of chronic illness with an annual
cost exceeding $18 billion US (Centers for Disease Control and Prevention 2017). Although
the development of allergy is dependent on a multitude of genetic, behavioral, and
environmental factors, exposures to immunotoxic agents are a major underlying contributor
to allergic diseases (Boverhof et al. 2008). Immunotoxic agents with the capacity to impact
allergic disorders generally exert one of two effects. First, the agent can act as an allergen or
sensitizer. Following exposure to these agents, the resultant adaptive immune response is
specific to the agent and subsequent encounters trigger allergic reactions. Contrarily, agents
can augment immunological processes involved in allergic disorders specific to differing
agent. These agents are often referred to as “adjuvants” or “immuno-modulators” and their
effects can range from increasing host susceptibility to sensitization, decreasing the allergen
dose required to induce sensitization, decreasing the dose required to elicit allergic
responses, or exacerbating the severity of allergic responses (Zunft 1996).

As the nanotechnology market continues to expand and the global prevalence of allergic
disease continues to increase, the knowledge gap regarding the immunotoxic potential of
nanomaterials is becoming increasingly relevant. Specifically, the capacity for nanomaterials
to cause or exacerbate allergic disease remains largely unknown, which is particularly
concerning with respect to a specific class of nanomaterials. Metal-based nanomaterials (e.g.
metallic, oxidic, alloy, and salt forms) are one of the classes of nanomaterials being
produced in the largest quantities. Noteworthy metal nanomaterials, their applications, and
corresponding rates of production are shown in Table 1. These emerging materials present a
specific concern with respect to allergy, as many of the metal-based nanomaterials being
manufactured in large volumes are comprised of metals known to cause allergic contact
dermatitis (ACD), asthma, and allergy adjuvancy (Warshaw et al. 2013; Schmidt and
Goebeler 2015).
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Metal nanomaterials are being increasingly incorporated into nano-enabled products and
consumer goods, increasing the potential for exposures in the general public (Vance et al.
2015). Although the unknown immune effects of many metal nanomaterials present a risk
for consumers, workers involved in the manufacture, handling, and transportation of metal
nanomaterials present a population particularly susceptible to adverse allergic effects. The
National Science Foundation estimates that by 2020, at least 2 million workers in the United
States alone will be employed by nanotechnology-related fields (Roco 2011). New
nanomaterials are continually being developed, and workers are often the first individuals in
society to encounter emerging materials, and often in much greater quantities than
consumers. Moreover, occupational settings are known to contribute to the development and
progression of allergic diseases (Arruda et al. 2005). Of the 24 million Americans affected
by allergic asthma, 10-25% of adult cases are related to workplace conditions (Petsonk
2002). Skin allergies are even more common, affecting an estimated 15-20% of the general
population, wherein an estimated 25-60% of ACD cases are related to occupational settings
(Diepgen and Coenraads 1999; Peiser et al. 2012).

Several specific concerns have emerged with respect to metal nanomaterials and their
potential effects on allergic disease. First, the characteristic size profile of metal
nanomaterials may confer enhanced potential for skin penetration and more efficient
deposition in the lungs, circumventing one of the major barriers associated with limiting
adverse immune effects induced by larger-sized metals. Secondly, the exposure threshold
required for dermal and respiratory sensitization by metal nanomaterials may be lowered as
a result of their unique chemistry. Lastly, the induction of inflammation and tissue injury
caused by many metal nanomaterials may serve as an adjuvant, promoting the development
of allergic disease to environmental allergens or exacerbating the severity of established
allergic conditions. This review aims to summarize current scientific knowledge regarding
these concepts. In addition to dermal and respiratory studies that examine specific metal
nanomaterial effects, studies designed to delineate the role of physical and chemical
properties in these effects are emphasized. Finally, considerations and knowledge gaps in the
field are highlighted as potential directions for future research.

Metals and allergic disease

Metals are a class of agents associated with expansively diverse immune effects including
irritancy, autoimmunity, sensitization, and adjuvancy (Lawrence and McCabe 2002). The
potential for such diverse biological effects is reflective of the expansive potential speciation
of metals, which can include elemental forms, ions, salts, and organified compounds
(Templeton 2015). Moreover, as exemplified by the transition metal series, many metals
exist in and transition between different oxidation states that have distinctive immunological
activity (Artik et al. 1999; Crichton 2017). The chemical behavior unique to these potential
states dictates the molecular and cellular interactions responsible for metal immunogenicity.
Since many of these properties are known to be altered on the nano-scale, metal-induced
immune effects with relevance to allergy are detailed, with emphasis on specific processes
subject to impact by metal nanomaterial physicochemical properties.
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Metals and dermal allergy

The most common metal-induced allergic disorder of the skin is ACD, a T-cell-mediated
delayed-type hypersensitivity response. Dermal sensitization and the subsequent induction
of ACD requires several key molecular and cellular events (Figure 2), which have been
outlined in an adverse outcome pathway (AOP) by the Organization for Economic Co-
operation and Development (OECD) (OECD 2014).

The preliminary requirement for skin sensitization is bioavailability of the sensitizing agent.
Since a primary function of the skin is to serve as an effective barrier between the host and
environment, the sensitizing potential of many antigens is limited by their capacity to evade
this barrier (Jaitley and Saraswathi 2012). Passage through the uppermost layers of the
epidermis is heavily dependent on antigen physical and chemical properties. Likewise, most
dermal sensitizers tend to be low molecular weight (LMW, < 500 Daltons) chemicals with
adequate lipophilicity (logP ~2) (Chilcott and Price 2008; Karlberg et al. 2008). Metals
associated with skin sensitization present the greatest concern when formulated as soluble
salts that release ions capable of penetrating the physical barrier presented by the epidermis
(Di Gioacchino et al. 2007; Kubo et al. 2013).

The next steps in the skin sensitization AOP involve the molecular initiating event of skin
sensitization-antigen formation. The small size required for antigen passage through the
stratum corneum is not conducive with cellular recognition (Anderson et al. 2011). As a
result, most skin sensitizers are referred to as haptens, which must acquire or possess
inherent chemical reactivity that facilitates binding to carrier molecules (Budinger et al.
2000; Chipinda et al. 2011). This process generates adequate size for recognition by an
antigen-presenting cell (APC). The APC most frequently implicated in dermal sensitization
is the resident dendritic cell (DC) of the epidermis, the Langerhans cell (LC) (Thyssen and
Menne 2010).

In addition to uptake of the hapten/carrier complex, activation of LC requires an additional
antigen-nonspecific signal indicative of an elevated threat level. Many mediators capable of
fulfilling this signal are released by non-immune cells including keratinocytes in response to
injury (Dearman and Kimber 2003). Presence of both antigen-specific and nonspecific
signals induce LC maturation, upregulation of co-stimulatory molecules, antigen processing,
and migration to the lymph nodes (Tong€ic et al. 2011).

Once the LC reaches the lymph nodes, the processed hapten is presented via major
histocompatibility Class | (MHC 1) molecules to naive CD8* T-lymphocytes until
recognition occurs by antigen-specific T-cell receptor (TCR). Given adequate costimulatory
signals from the LC, T-lymphocytes undergo proliferation producing a pool of clonal
antigen-specific effector T-cells. The T-cells enter the circulation, and following resolution
of inflammation, a subset of these effector cells will survive and become memory T-cells,
completing the process of sensitization.

Upon future exposures to the allergen, memory and effector T-cells are recruited to the site
of exposure where CD8* T-cells exhibit immediate cytotoxic effector functions. CD4* T-
helper (Ty) of the Ty1 phenotype have regulatory roles in ACD and produce high levels of
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the cytokines interleukin (IL)-2 and interferon (IFN)-vy, contributing to inflammatory cell
recruitment (Sasseville 2008; Tonci¢ et al. 2011). Within 48 h, the inflammatory process
originally orchestrated to destroy the antigen results in the clinical manifestations of ACD,
including localized skin redness, swelling, and itching at the site of allergen contact.

Metals are among the most common inducers of ACD in the general population. Patch test
studies have generated data from thousands of subjects and reveal that the most common
inducers of metal ACD are nickel, gold, cobalt, and chromium (Belloni Fortina et al. 2015).
Interestingly, studies using subjects exclusive various geographical locations have
demonstrated that these four metals are consistently problematic with respect to ACD
worldwide (Kanerva et al. 2000; Mattila et al. 2001; Goon and Goh 2005; Cheng et al. 2008;
Davis et al. 2011; Nonaka et al. 2011; Khatami et al. 2013; Mahler et al. 2014; Kim et al.
2015; Malinauskiene et al. 2015; Linauskiene et al. 2017). Though less frequently associated
with ACD, copper, aluminum, and platinum group metals are also known to cause skin
allergy in some individuals (Hostynek et al. 1993; Bergfors et al. 2005; Faurschou et al.
2011; Fage et al. 2014).

Metals and respiratory allergy

Metals are also associated with respiratory allergy and IgE-mediated asthma. An AOP
specific to the events of respiratory sensitization has not been adopted by the OECD, but
many of the same steps of the dermal sensitization AOP are involved in the development of
asthma. Accordingly, bioavailability of the sensitizing agent is also a preliminary limiting
factor in respiratory sensitization potential. Since the primary function of the respiratory
tract is to facilitate gas exchange between the host and environment, it is particularly
vulnerable to adverse effects from a diverse assortment of agents in the inhalable (< 20 pm)
and respirable size range (< 10 um) (Elder and Oberdorster 2006). Likewise, bioavailable
metals capable of sensitizing the respiratory tract are not limited to ions, like in the skin
(Linde et al. 2017). Respirable metals may be encountered as particulate matter, vapors, or
fumes and can be constituents of compounds including oxides, sulfides, and salts, or as
complexes with ammonia, carbon monoxide, and organic nitrogen (Malo et al. 2013).

Since both low and high molecular weight (HMW) agents are capable of inducing asthma,
the molecular initiating events of respiratory sensitization may differ accordingly. Similar to
the skin, pulmonary immune responses following inhalation of metals can be nonspecific
and self-limiting, or can result in the recruitment of the adaptive immune system. Lung-
resident DC take up antigen, and given adequate second signals, the antigen is processed and
DC migrate to the lung-draining lymph nodes. Here, the peptide is presented to naive CD4*
T-lymphocytes along with costimulatory molecules, resulting in the preferential expansion
of the T2 phenotype lymphocytes. These cells produce high levels of 1L-4, IL-5, and
IL-13, and stimulate isotype switching and allergen-specific IgE-production by B-cells. The
Fc portion of secreted IgE is bound to FceRI receptors present on tissue-resident mast cell
surfaces and circulating basophils, exposing the antigen-recognizing motif, completing the
sensitization process (Verstraelen et al. 2008).

Upon subsequent encounters, the allergen is bound by allergen-specific IgE on the surface of
mast cells and basophils. Binding induces crosslinking of receptors and the subsequent
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release of preformed mediators such as histamine, beginning the anaphylactic cascade
responsible for the early asthmatic reaction experienced minutes after antigen encounter.
Acute clinical manifestations of allergic asthma range from rhinitis and bronchoconstriction
to anaphylactic shock. The late phase asthmatic response occurs 4-6 h later as a result of
mast cell mediators and recruitment of inflammatory cells (Possa et al. 2013). Clinical
presentations of the late phase asthmatic response tend to be more severe than early phase
responses, and include excessive mucus production, increased vascular permeability, and
airway constriction. Chronic cycles of allergic inflammation and subsequent repair are
associated with structural alterations in the airways that can have physiological implications,
such as a decline in lung function (Erle and Sheppard 2014).

Compared to metal-induced ACD, metal-induced asthma occurs far less frequently. Cases
tend to be isolated to individuals working in occupations involving metalwork where metal
fumes, dust, or vapors are generated and inhaled (Wyman and Hines 2018). Nickel,
chromium, cobalt, vanadium, zinc, platinum and aluminum have all been associated with
cases of occupational asthma (Musk and Tees 1982; Hong et al. 1986; Malo et al. 2013).
However, metal-specific IgE has only been implicated in cases caused by nickel, platinum,
chromium, and cobalt (Malo et al. 1982; Murdoch et al. 1986; Shirakawa et al. 1988, 1990,
1992; Kusaka et al. 1996). Metal-specific 1IgG molecules have also been implicated in cases
of cobalt and platinum-induced asthma (Pepys et al. 1979; Cirla 1994). The presence of
metal-specific IgE has also been confirmed in the absence of asthmatic symptoms,
emphasizing the potential for numerous immunological mechanisms in metal-specific
asthma (El-Zein et al. 2005; Toncic et al. 2013).

Metals and allergy adjuvancy

In addition to their potential to induce sensitization, metals are also associated with the
capacity to modulate allergic responses to nonmetal allergens. Contrasted with the
consistent, sequential series of cellular processes involved in allergic sensitization and
elicitation, adjuvant effects can emerge as a result of various mechanisms in various phases
of allergic disorders (Figure 3).

An example of metal adjuvant effects on the development of adaptive immune responses is
best demonstrated by aluminum hydroxide, which is one of the most frequently used vaccine
adjuvants. When administered with poorly-immunogenic antigens, aluminum hydroxide
induces adequate stimulation of the innate immune system to generate antigen-specific
immunological memory. Mechanisms of immunopotentiation associated with aluminum
hydroxide include triggering release of alarmins, activation of inflammasomes (intracellular
multi-protein complexes involved in innate immune responses), and DC activation; however,
numerous other mechanisms including immune cell recruitment and activation, modulated
cytokine production, and altered antigen delivery kinetics, can also enhance sensitization
(Naim et al. 1997; Aimanianda et al. 2009).

Similarly, metals are also associated with adjuvant effects on established allergic conditions,
as demonstrated by metal-rich ambient air pollution, which is known to exacerbate the
severity of asthmatic responses to environmental allergens (Gavett et al. 2003; Schaumann et
al. 2004). Adjuvant effects on allergic elicitation can involve mechanisms including
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induction of pulmonary oxidative stress, enhanced degranulation of mast cells, and
recruitment of inflammatory cells (Walczak-Drzewiecka et al. 2003; Ghio 2008).

Unique properties associated with metal immune effects

Metals are known to induce many unique immune effects implicated in allergic disease.
With respect to sensitization, the modulation of innate immune reactivity by some metals
has been associated with their immuno-genicity. For example, some metal ions are known to
produce functional mimicry of pathogen-associated molecular patterns (PAMP) (Schmidt
and Goebeler 2015). Gold ions have the capacity to bind and activate Toll-like receptor
(TLR)-3, while nickel, cobalt, and palladium ions have the capacity to bind and activate
human TLR-4 (Schmidt et al. 2010; Rachmawati et al. 2013, 2015). The subsequent
induction of pro-inflammatory signaling generates the antigen nonspecific signals required
for DC activation, promoting sensitization.

Metals are also known to modulate mechanisms of communication between innate and
adaptive immune cells. Accordingly, antigen presentation is another step in allergic
sensitization that is subject to interference by metals. Beryllium and noble metals have been
shown to induce structural alterations in MHC molecules, impacting subsequent interactions
with TCR (de Wall et al. 2006; Falta et al. 2013). Similarly, peptide-independent linking of
MHC and TCR by nickel has been demonstrated (Gamerdinger et al. 2003; Thierse et al.
2005). Adaptive immune responses can also be affected by metals, as demonstrated by CD4*
nickel-specific T-cell clones, which were shown to cross-react when presented with other
transition metals including copper and palladium (Moulon et al. 1995; Pistoor et al. 1995).

Many of the unique immune effects associated with metals emerge as a result of their
capacity to alter molecular and cellular interactions on a biochemical level. Accordingly,
their modulation of processes involved in allergic disease is critically dependent on
physicochemical properties including special geometry, oxidation state, and solubility
(Schuhmann et al. 1990; Kinbara et al. 2011). Many of these properties are altered in
nanoparticulate form, suggesting that metal nanomaterials may exhibit novel mechanisms of
immune interaction with implications for allergic disease.

Metal nanomaterials and dermal hypersensitivity

The potential for adverse immune effects following dermal exposure to metal nanomaterials
is a growing concern due to their increasingly frequent incorporation into consumer goods
intended to have prolonged contact with the skin (YYang and Westerhoff 2014). The unique
optical properties of titanium dioxide nanoparticles (TiO, NP) and zinc oxide nanoparticles
(ZnO NP) have led to their incorporation in sunscreens and cosmetics for their protective
effects against ultraviolet radiation (UVR) (Smijs and Pavel 2011; Yoshioka et al. 2017).
Silver nano-particles (AgNP) are being incorporated into clothes, medical textiles, toys, and
cleaning products due to their antimicrobial properties, and silica-based nanoparticles
(SiNP) have been frequently used in cosmetics and as a coating material to alter the
properties of other materials (Contado 2015; Tulve et al. 2015). Likewise, the dermal effects
of TiO, NP, ZnO NP, AgNP, and SiNP are a particular concern with respect to the general
public (Weir et al. 2012). These nanomaterials are also a concern for workers, but other
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metal nanomaterials with high rates of production (listed in Table 1) are also associated with
dermal exposures in the workplace.

The potential for metal nanomaterials to penetrate the skin, induce dermal sensitization, and
modulate skin allergy development/responses are the three main areas discussed in this
section with respect to size and other physicochemical properties. In correspondence with
the review of the literature, Table 2 summarizes studies characterizing effects of individual
metal nanomaterials on skin allergy. Table 3 summarizes studies designed to examine effects
of physicochemical properties of metal nanomaterials on dermal allergy. Table 4 highlights
key events involved in dermal sensitization and elicitation that have been shown to be
subject to modulation by metal nanomaterials and their corresponding physicochemical
properties.

Skin penetration and translocation studies

Adverse immune effects following dermal exposure to an agent are heavily dependent on the
degree to which the skin protects from its entry into the body. Likewise, one mechanism by
which dermal exposure to metal nanomaterials may lead to increased potential for adverse
immune effects compared to larger-sized metals is by size-mediated evasion of skin barrier
function. Although it seems logical that the small size of nanomaterials would inherently
provide increased opportunity for absorption via the skin, there is currently no general
consensus on the skin-penetrating capabilities of nanomaterials as a collective class of
agents (Vogt et al. 2006; Baroli 2010; Try et al. 2016).

Numerous studies have demonstrated that metal nanomaterials (< 100 nm) can penetrate
skin in various /n vivoand /n vitro models. Iron-based nanoparticles (FeNP), gold
nanoparticles (AuNP), palladium nanoparticles (PdNP), nickel nanoparticles (NiNP), AgNP,
SiNP, and metal-based quantum dots (QD) have all been associated with penetration of the
skin (Baroli et al. 2007; Chu et al. 2007; Filon et al. 2011, 2016; Labouta et al. 2011; Hirai
et al. 2012a; Rancan et al. 2012; George et al. 2014; Crosera et al. 2016; Kraeling et al.
2018). Moreover, many of these studies have established a relationship between decreased
particle size and increased potential for skin permeation (Ryman-Rasmussen et al. 2006;
Sonavane et al. 2008; Matsuo et al. 2016; Raju et al. 2018). Hydrophobicity, surface charge,
and morphology are additional properties that have been shown to be influential in the
capacity for these nanomaterials to pass through the stratum corneum (Rancan et al. 2012;
Lee et al. 2013; lannuccelli et al. 2014; Fernandes et al. 2015; Tak et al. 2015; Mahmoud et
al. 2018).

By comparison, the majority of studies investigating the skin-penetrating potential of metal
nanomaterials have been conducted with ZnO NP and TiO, NP and have not generated
equally consistent findings. Numerous studies have demonstrated that the stratum corneum
effectively restricts passage of TiO, NP, irrespective of size shown to facilitate penetration of
the skin by other metal nanomaterials. Repeated application of different forms of TiO, NP
did not lead to skin penetration in hairless rats, elevated levels of titanium in lymph nodes of
minipigs, or penetration of human skin transplanted onto immunodeficient mice (Kiss et al.
2008; Sadrieh et al. 2010; Adachi et al. 2013). Although TiO, NP were shown to accumulate
in and around furrows of the skin, microscopic analysis was used to confirm that 20-100 nm
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TiO, NP remained restricted to the uppermost 3-5 layers of corneocytes of the stratum
corneum (Lademann et al. 1999; Pfluicker et al. 1999; Gontier et al. 2008; Senzui et al.
2010). Contrarily, a few studies using TiO, NP-containing sunscreens have reported
penetration of particles into the viable epidermis of human skin (Tan et al. 1996; Coelho et
al. 2016; Naess et al. 2016).

Similar observations have been reported for ZnO NP. Despite associations with hair follicles,
ZnO NP were not capable of penetrating the stratum corneum in multiple models,
irrespective of alterations in size, morphology, and surface characteristics (Schulz et al.
2002; Zvyagin et al. 2008; Leite-Silva et al. 2013). However, ion release from ZnO NP and
ZnO NP-containing sunscreens has been observed, highlighting a potential risk associated
with soluble metal nanomaterials (Holmes et al. 2016).

Adverse effects following dermal exposure to nanomaterials may result from penetration of
the particulate material or ions released from the parent material. Likewise, physicochemical
properties of interest may be differentially implicated in effects associated with soluble and
insoluble metal nanomaterials. With respect to soluble materials, properties associated with
accelerated ion release may indicate increased potential for skin penetration (Lansdown
1995; Hostynek 2003; Thyssen and Menne 2010). The rate of ion release is proportional to
specific surface area (SSA; surface area per mass unit), which is exponentially increased on
the nano-scale (Laudanska et al. 2002; Zhang et al. 2011; Larese Filon et al. 2015). This
concept explains the observation that application of sunscreens containing ZnO NP caused
greater increases in blood, urine, and organ Zn ion levels than sunscreens containing larger-
sized ZnO particles (Gulson et al. 2010, 2012; Osmond-McLeod et al. 2014). Moreover, the
manipulation of properties with implications for dissolution potential, such as particle
coating, vehicle, and suspension pH have been shown to promote Zn ion release from ZnO
NP following dermal exposure (Leite-Silva et al. 2013; Holmes et al. 2016).

Although penetration through corneocytes of the stratum corneum is the primary pathway
associated with skin penetration by materials, appendages including hair follicles, sebaceous
glands, sweat glands, and skin folds can mediate an additional mechanism of skin
penetration. This pathway has notable relevance to nanomaterials, as evidenced by the utility
of the trans-follicular delivery route for nano-scale pharmaceutics and vaccines (Mahe et al.
2009). Compared to the thickness of the stratum corneum, which measures 10-20 mm, hair
follicles can reach a tissue depth of 2000 mm (Toll et al. 2004). Since the base of hair
follicles extends into the dermis and receives generous lymph and blood supply, they may
promote access into the circulation (Elder et al. 2009). Moreover, hair follicles can serve as a
potential reservoir, promoting accumulation of nanomaterials. Retention in hair follicles can
extend the duration of exposure 10-fold, raising specific concerns for continual ion release
(Lademann et al. 2006, 2009, 2015; Patzelt et al. 2011; Mahmoud et al. 2017). This pathway
of skin penetration may also favor immune responses since hair follicles are surrounded by
dense networks of LC and specialized keratinocyte subpopulations known to have critical
roles in the early events of sensitization (Toews et al. 1980; Vogt et al. 2006; Nagao et al.
2012).
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The diameter of hair follicles can vary greatly in response to anatomical location, but the
smallest follicles tend to be located on the forehead and forearm and measure between 66
and 78 mm (Otberg et al. 2004). Interestingly, the optimal size for penetration of hair
follicles is significantly larger than the < 100 nm size range associated with increased skin
penetration of several metal nanomaterials. Particles with 600-700 nm diameter have been
shown to deposit in the deepest depths of hair follicles, suggesting that agglomerates of
nanomaterials in this size range are potentially more hazardous than primary particles
(Patzelt et al. 2011; Lademann et al. 2015). Furthermore, preferential accumulation in
follicles has been observed in hydrophobic and neutrally-charged nanomaterials (Mahmoud
et al. 2017).

Although physicochemical properties of metal nanomaterials have been shown in some
instances to impact skin penetration, an assortment of host factors can also impact this
process. Variations in epidermal thickness, integrity, degree of hydration, and skin pH, all of
which may further differ between gender, can greatly influence skin permeability (Sandby-
Moller et al. 2003; Senzui et al. 2010; de Matteis et al. 2016). However, the role of disrupted
skin barrier integrity is one of the most commonly-examined host factors with applicability
to allergic disease since skin permeability can be increased 4-100 times in individuals with
skin allergy (Larese Filon et al. 2016).

Scratching to alleviate itching associated with allergic skin lesions leads to mechanical
damage to the upper layers of skin. Similar degrees of damage have been shown to increase
in vivo penetration of some metal nanomaterials in humans and rodents (Zhang and
Monteiro-Riviere 2008; Gopee et al. 2009; Ravichandran et al. 2011; Prow et al. 2012). /n
vitro simulations using a human skin model called the Franz Method have demonstrated
increased capacity for passage through damaged skin by 25 nm AgNP, 6 nm PtNP, 5 nm
rhodium nanoparticles (RhNP), 10 nm PdNP, 78 nm NiNP, and 80 nm CoNP (Larese et al.
2009; Larese Filon et al. 2013; Mauro et al. 2015; Crosera et al. 2016; Filon et al. 2016).
Contrarily, studies have shown that penetration of various sizes of TiO, NP and ZnO NP are
not increased in skin damaged by chemical irritants, tape-strip-ping, hair removal, or
mechanical force (Senzui et al. 2010; Lin et al. 2011; Miquel-Jeanjean et al. 2012; Crosera
et al. 2015; Xie et al. 2015; Leite-Silva et al. 2016).

A few /n vivo studies have also investigated effects of skin barrier dysfunction resulting from
existing skin allergy on the penetration of metal nanomaterials (Larese Filon et al. 2016). In
a mouse model of skin allergy, ZnO NP skin penetration of allergic skin was size-
dependently increased, as 240 nm ZnO particles did not penetrate the skin to a similar
degree as 20 nm ZnO NP (llves et al. 2014). Studies using nonmetal nanomaterials have also
demonstrated that penetration of nanomaterials in allergic skin is size-dependent (Try et al.
2016). ZnO NP were also shown to penetrate allergic skin ex vivo using human skin samples
(Szikszai et al. 2011). Contrarily, application of 35 nm ZnO NP to skin of living human
subjects with atopic dermatitis did not lead to penetration into viable skin (Lin et al. 2011).
Discrepancies between these studies may be reflective of varying exposure durations, as the
study reporting penetration involved continuous exposure of up to 2 weeks, compared to the
4-hr exposure wherein no penetration was observed.

J Immunotoxicol. Author manuscript; available in PMC 2019 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Roach et al.

Page 12

Comparatively, equally prolonged exposure to AgNP-containing textiles did not lead to
increased skin penetration in individuals suffering from atopic dermatitis compared to
control subjects. Sleeves containing silver particles (30-500 nm) were worn by human
subjects for 8 h a day for 5 consecutive days, following which levels of AgNP and
aggregates in the skin were quantified. Compromised skin barrier was not associated with
increases in AgNP skin accumulation; moreover, no differences in urine Ag levels were
observed, indicating that atopic dermatitis did not impact the absorption of ions released
from the textiles either (Pluut et al. 2015; Bianco et al. 2016).

Discrepancies in findings regarding the importance of skin barrier integrity on metal
nanomaterial skin penetration may be explained by several observations. The diverse degrees
of epidermal barrier function disruption between studies represent a potential source of
variation. Complete ablation of epidermal function is only observed in response to severe
burns and lacerations; likewise, the diverse mechanisms of experimentally-induced
disruptions of the stratum corneum should be compared cautiously. In addition, the
pathogenesis of atopic dermatitis between experimentally-induced animal models and
humans may explain some discordant findings. The severity of lesions between subjects of
human studies is also subject to extreme variation, as well. Since chronic skin inflammation
can result in epidermal thickening, enhanced barrier function is not uncommon in many skin
disorders (Nohynek et al. 2007). Lastly, differences in exposure conditions and duration, test
material formulation, and method of penetration assessment can also serve as a source of
variation in conclusions between studies. A notable distinction should be made between test
materials, since some studies used pristine metal nanomaterials, and others used
commercially-available TiO, NP/ZnO NP-containing sunscreens. As noted by Gulson et al.
(2012), their observations regarding ZnO NP skin penetration may have been subject to
modulation by excipients of the commercial sunscreens used in their study. The sunscreen
contained isopropyl myristate, a chemical known to enhance the permeability of the skin, as
well as EDTA, a chelating agent which may have influenced the release of ions from
ZnONP.

In addition to nanomaterial properties and host factors known to influence the capacity for
metal nanomaterials to penetrate the skin, environmental factors may also impact this
process. One environmental factor with particular relevance to metal nanomaterials and their
use in sunscreens is UVR. Although high levels of UV exposure and subsequent sunburn can
significantly disrupt epidermal barrier function, low doses of UV exposure are also known to
compromise the integrity of the epidermis (Wolf et al. 1993; Holleran et al. 1997; Biniek et
al. 2012). Accordingly, several studies have shown that UV exposure prior to topical
application of nanomaterials results in greater depth of penetration by ZnO NP, TiO, NP, and
QD (Mortensen et al. 2008; Monteiro-Riviere et al. 2011; Mortensen et al. 2013). Moreover,
UVR can induce alterations in physicochemical properties of metal nanomaterials that may
facilitate their passage through the stratum corneum, such as agglomerate disaggregation and
ion release (Martorano et al. 2010; Bennett et al. 2012; Zhou et al. 2012; Ma et al. 2014).

Simultaneously, UVR-induced photoactivation of some metal nanomaterials can facilitate
their penetration of the skin. /n vitro, UVR-induced ROS production by TiO, NP, QD, and
ZnO NP has been associated with DNA damage, lipid peroxidation, and mitochondrial
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permeability in skin cells (Tiano et al. 2010; Wang et al. 2013; Petersen et al. 2014;
Mortensen et al. 2015; Xue et al. 2015, 2016). Subsequent cytotoxicity to dermal fibroblasts,
keratinocytes, and melanocytes is another mechanism by which skin barrier integrity can
become compromised as a result of UVR. /n vivo, UVR-induced photoactivation of TiO, NP
has been associated with increased adherence to the skin, structural rearrangement of the
lipid bilayer, and facilitation of large molecule transdermal penetration (Bennett et al. 2012;
Turci et al. 2013; Peira et al. 2014; Pal, Alam, Chauhan, et al. 2016; Pal, Alam, Mittal, et al.
2016). Since the degree of ROS produced in response to UVR has been associated with
nanoparticle surface area and reactivity, other related properties such as size, degree of
agglom-eration, and surface modification may also contribute to skin penetration following
UVR exposure (Shen B et al. 2006; Jassby et al. 2012; Yin et al. 2012; Xiong et al. 2013).

Although UVR may contribute to adverse effects following dermal exposure to metal
nanomaterials by facilitating skin penetration, it may also present a unique concern with
respect to allergy. Many signaling pathways and pro-inflammatory mediators involved in
sensitization have been associated with UVR-dependent photoactivation of metal
nanomaterials (Murray et al. 2013; Rancan et al. 2014). Moreover, UVR is known to
modulate the immune status of the skin by a number of mechanisms. For example, UVA and
UVB are known to augment costimulatory molecule expression, compromise antigen
presentation, and induce apoptosis of LC (Rattis et al. 1998; Seite et al. 2003; Schwarz
2005). Subsequent effects on the immunological fate of metal nanomaterials on the skin
have been demonstrated. In a mouse model, significant depletion of LC (~80%) following
UVR exposure increased skin penetration of QD, but resulted in lower levels of metal ion
constituents in the lymph nodes (Mortensen et al. 2013).

Skin sensitization studies

The skin sensitizing potential of metal nanomaterials has been investigated in a few studies
using traditional /n vivo approaches. SiO, NP, ZnO NP, and TiO, NP have all been
incorporated into the Local Lymph Node Assay (LLNA) (Mandervelt et al. 1997; Basketter
etal. 1999). Accordingly, it was demonstrated that topical exposure to 100 nm mesoporous
and colloidal SiO, NP, 7 nm SiO, NP, and ZnO NP were not capable of inducing the 3-fold
increase in lymphocyte proliferation associated with classification as a dermal sensitizer
(Choi et al. 2011; Lee et al. 2011; Kim et al. 2016). Similarly, topical exposure to 25 nm
TiO, NP did not induce dermal sensitization in multiple studies; however, subcutaneous
injection of equal doses resulted in significant increases in lymphocyte proliferation,
suggesting that the inability for TiO, NP to penetrate the skin might be a limiting factor in
the potential to induce dermal sensitization (Park et al. 2011; Auttachoat et al. 2014).

The guinea pig maximization test (GPMT) is another /n vivo technique used to evaluate
dermal sensitization potential that has been employed in the investigation of several metal-
based nanomaterials. In one study, five UV-absorbing materials containing SiO, NP, ZnO
NP, and TiO, NP were assessed. One out of 10 animals exhibited slight erythema following
topical exposure to the ZnO NP and TiO, NP-containing agents, leading to their
classifications as mild skin sensitizers (Piasecka-Zelga et al. 2015). In another study, 1 of 20
animals exhibited discrete patchy erythema following intradermal injection with 10 nm
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AgNP, leading to its classification as a weak skin sensitizer (Kim et al. 2013). Similarly,
AgNP were classified as a Grade Il (mild sensitizer) after 2 of 10 guinea pigs exhibited
lesions 48 h after application of AgNP-containing sterile gauze (Zelga et al. 2016). However,
similar AgNP-containing dressings were actually shown to improve the healing of burn
wounds in rats over an 18-d period as compared to rats with dressings lacking AgNP, but the
study only examined the localized effects (Pannerselvam et al. 2017). The GPMT has also
been used to demonstrate that surface-modified FeNP and hydroxyapatite nanoparticles did
not induce skin sensitization (Geetha et al. 2013; Mohanan et al. 2014).

The sensitization potential of 5 and 10 nm AgNP was investigated by Hirai et al. (2016) in a
mouse model. Mice were injected with AgNP or Ag ions and lipopolysaccharide (LPS) once
a week for 4 weeks, and then intradermally challenged. Interestingly, mice administered Ag
ions in the sensitization phase did not develop ear swelling following challenge with any
form of Ag. Contrarily, AgNP exposure induced sensitization, wherein the smaller AgNP
appeared to have stronger sensitizing potential, which was dependent on CD4* T-cells and
IL-17a, but not IFN-y. Moreover, ear swelling was observed in response to additional sizes
of AgNP (50 and 100 nm) and Ag ions, suggesting that the immune response is not
nanoparticle-specific. Further examination revealed that 3 nm NiNP was also capable of
inducing sensitization in the model, whereas minimally-ionizable 10 nm AuNP and 10 nm
SiNP were not (Hirai et al. 2016).

In addition to /n vivo approaches to assess skin sensitization, three non-animal alterative
assessment methods based on different steps of the skin sensitization AOP are currently
validated by the OECD. While metal nanomaterials have not been incorporated into any of
the assays, studies with similar cell lines and endpoints have indicated that many metal
nano-materials can induce effects similar to those of other skin sensitizers.

The Direct Peptide Reactivity Assay (DRPA) is an in chemico assay based on the
requirement for haptens to bind skin proteins to acquire immunogenicity. Accordingly, the
molecular imitating event of dermal sensitization is evaluated by quantification of reactivity
of an agent towards synthetic lysine and cysteine residues (Gerberick et al. 2004). While
some studies have investigated metal nanomaterials and their interactions with proteins and
specific amino acids, implications for their capacity to form hapten/carrier complexes are
still unclear. However, cysteine has been associated with decreased stability, increased
dissolution, and accelerated ion release from metal alloy nanoparticles and AgNP (Hahn et
al. 2012; Ravindran et al. 2013; Siriwardana et al. 2015). Moreover, various amino acids
have been associated with preferential binding affinities with respect to AuNP size and TiO,
NP surface charge, supporting a role for multiple physicochemical properties in the
molecular initiating event of skin sensitization (Liu et al. 2016; Shao and Hall 2016).

The second validated /n vitro assay for determination of skin sensitizing potential involves
evaluation of the keratinocyte response to test agents, since they are a source of numerous
mediators that facilitate LC migration, antigen presentation, and T-cell activation during
sensitization (Kimber and Cumberbatch 1992). Since many of these mediators are released
in response to sensitizer-induced activation of the antioxidant/electrophile sensing pathway
Keapl/Nrf2/ARE, its activation is suggestive of potential for the test agent to contribute to
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the cellular response of the sensitization AOP (Natsch and Emter 2008; 2016; Ramirez et al.
2014). The human keratinocyte cell line associated with this assay, HaCaT, has been
frequently used to investigate potential metal nanomaterial effects on the skin 7n vitro.
Correspondingly, PANP, AuNP, and PtNP have all been shown to activate the Nrf2 pathway
in keratinocytes /n vitro (Goldstein et al. 2016; Tsuji et al. 2017). Similarly, zinc-containing
QD, ZnO NP, and CuO NP have all been shown to alter expression of several specific genes
associated with the Nrf2 pathway, including HMOXI (Rice et al. 2009; Romoser et al. 2011,
Lee et al. 2012).

Prior to the establishment of Nrf2 pathway involvement in keratinocyte responses to skin
sensitizers, cytokine release by keratinocytes /n vitro was evaluated as an indicator of
sensitizing potential (Jung et al. 2016; Koppes et al. 2017). Tumor necrosis factor (TNF)-a
is a keratinocyte-derived cytokine involved in sensitization and is critically involved in skin
sensitization by chromium and nickel (Lisby et al. 1995; Wang et al. 2007). Dose-dependent
TNFa release has been noted following keratinocyte exposure to AgNP, QD, and ZnO NP,
indicating high doses may promote LC maturation and dermal sensitization (Samberg et al.
2010; Romoser et al. 2011; Jeong et al. 2013). IL-18 and IL-1p (cytokines critical for LC
activity) have also been shown to be increased by QD, SiO, NP, TiO, NP, and AgNP
(Ryman-Rasmussen et al. 2007; Samberg et al. 2010; Yazdi et al. 2010; Romoser et al. 2011,
Hiroike et al. 2013; Zhang and Monteiro-Riviere 2019).

Another mediator involved in skin sensitization that is differentially-released by keratino-
cytes in response to irritants and sensitizers is IL-1a (Coquette et al. 2003; Koppes et al.
2017). Though it can also be actively secreted after inflammasome activation, IL-1a is an
intracellular molecule that functions as an alarmin (Ansel et al. 1988). During programed
cell-death, IL-1a remains associated with chromatin and its sequestration prevents effector
functions. Contrarily, under necrotic conditions, it is passively released and bioactive.
Accordingly, the mechanism of metal nanomaterial-induced keratinocyte cytotoxicity may
significantly impact the development of ACD as a result of differential IL-1a release.
Although mechanisms associated the preferential induction of necrosis or apoptosis by
nanomaterials have yet to be established, some properties have been correlated to these
effects (de Stefano et al. 2012; Mohammadinejad et al. 2019). For example, surface charge
of 1.5 nm AuNP was demonstrated to be responsible for the mechanism of cell death in
HaCaT cells /n vitro. Charged AuNP led to disruptions in mitochondrial membrane potential
and intracellular calcium levels causing apoptosis, whereas neutral AUNP were associated
with necrotic cell death (Schaeublin et al. 2011). Preferential HaCaT apoptosis or necrosis
has also been associated with AgNP surface coating and TiO, NP crystal phase (Braydich-
Stolle et al. 2009; Bastos et al. 2016). Collectively, these findings assert that surface
chemistry/reactivity of metal nanomaterials may be a critical property in determining
whether dermal exposure results in irritation responses or sensitization.

The last validated alternative approach to evaluate skin sensitizing potential involves
assessment of the potential for an agent to induce upregulation of activation markers (CD 86
and CD 54) on human APC. However, since the recommended cell lines for these assays
(THP-1 and U937) are representative of general DC and not skin-specific DC, these studies
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will be discussed in the /n vitro section of this review, as they may also apply to respiratory
sensitization and augmentation of allergy.

Very few studies have been conducted to investigate metal nanomaterial effects specific to
LC. However, topical exposure to < 100 nm AgNP in guinea pigs was shown to increase the
number of LC at the site of exposure in a dose- and time-dependent manner (Korani et al.
2011). This observation is relevant to skin sensitization since the concentration of LC
present in the skin has been correlated with increased susceptibility to ACD development.
Other /n vivo studies confirmed metal nanomaterials including QD are taken up by LC and
subsequently transported to lymph nodes (Jatana et al. 2017b). /n vitro, associations with LC
have been shown to be influ-enced by SiNP size and surface functionalization (Vogt et al.
2006; Rancan et al. 2012). Smaller SiNP size has also been correlated to increased uptake,
ROS production, and cytotoxicity to LC /n vitro (Nabeshi et al. 2010; Yoshida et al. 2014).

A specific observation regarding DC that has implications for ACD and dermal sensitization
is that some metal nanomaterials can promote DC cross-presentation. Cross-presentation
describes uptake of exogenous antigens and their subsequent processing by pathways
normally associated with endogenous antigens. As a result, the exogenous antigen is
presented by MHC | molecules to CD8" T-cells, generating the cytotoxic effector cells
characteristic of ACD.

Aluminum nanoparticles (AINP), AuNP, FeNP, and SiNP have all been shown to modify DC
antigen cross-presentation capacity (Blank et al. 2011; Li et al. 2011; Hirai et al. 2012;
Jiménez-Periafez et al. 2013; Kang S et al. 2017; Mou et al. 2017; Dong et al. 2018). The
mecha-nism of antigen uptake by DC is known to influence the preferential association of
antigens with MHC | or 1l molecules. Small lipophilic haptens associated with skin
sensitization often enter APC via passive diffusion and bind cytoplasmic proteins, favoring
their processing by endogenous pathways and presentation by MHC | molecules
(Rustemeyer et al. 2006). Accordingly, passive diffusion through cell membranes similar to
that demonstrated by charged 15 nm AuNP may result in promotion of cross-presentation
(Arvizo et al. 2010; Lin et al. 2010; Taylor et al. 2010). Contrarily, receptor-mediated
endocytosis of larger antigens has been associated with cross-presentation when uptake
occurs by F¢ and mannose receptors (Blum et al. 2013). In this regard, the adsorption of
macromolecules, including immunoglobulins, to the surface of nanomaterials and
physicochemical properties associated with the adsorption of proteins may be critically
influential in determining the route of antigen processing.

Another major determinant of antigen association with MHC | or 11 is persistence inside DC.
Antigens resistant to degradation in endosomes are more likely to be processed by MHC |
pathways (Lin et al. 2008; Humeniuk et al. 2017). Likewise, metal nanomaterials with
physicochemical properties capable of compromising lysosomal acidification (dissolution
rate, surface reactivity) may promote cross-presentation (Accapezzato et al. 2005; Savina et
al. 2006). Similarly, endosomal escape following uptake by DC can result in binding to
cytosolic proteins and subsequent perception as an endogenous antigen (Lin et al. 2008).
One major mechanism of endosomal antigen release leading to cross-presentation is
oxidative stress and lipid peroxidation, causing antigen leakage from compromised
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endosome membranes (Shen H et al. 2006; Shahbazi et al. 2014; Dingjan et al. 2016).
Oxidative stress induced by CuNP, FeNP, and TiO, NP have been shown to cause lipid
peroxidation, and these metal nanomaterials have also been associated with enhancing DC
cross-presentation (Shukla et al. 2011; Napierska et al. 2012; Manke et al. 2013). Metal
nanomaterials have also been associated with the induction of autophagy and production of
exosomes by DC, both of which have also been associated with antigen cross-presentation
(Moron et al. 2004; Chaput et al. 2006; Crotzer and Blum 2009; Li et al. 2011; Shen T et al.
2018).

Augmentation of existing or developing skin allergy

Since dermal exposure to metal nanomaterials nearly always occurs simultaneously to other
exposures, their potential to augment skin allergy has been investigated using various allergy
models. Metal nanomaterial effects on skin allergy have been studied with respect to both T-
cell-mediated ACD and IgE-mediated atopic dermatitis. The effects of metal nanomaterials
in ACD models have demonstrated findings suggestive of potential effects during both
allergic sensitization and elicitation. In one study, subcutaneous exposure to TiO,NP 1 hr
prior to skin sensitization with dinitrochlorobenzene (DNCB) increased susceptibility of
mice to sensitization, as evidenced by a lower concentration of DNCB required to induce
sensitization (Hussain et al. 2012; Smulders et al. 2015). The authors noted that although
DNCB is known to induce a T1-dominant response characteristic of ACD, exposure to
TiO,NP resulted in a Ty2-dominant response in the regional lymph nodes. In a similar
study, TiOoNP were applied topically 1 day prior to sensitization with DNCB, and the same
effect on sensitization as observed (Smulders et al. 2015). A diminished TH1 response was
observed and TiO,NP were detectable in the lymph nodes. Contrarily, SiO,NP and AgNP
did not induce alterations to DNCB sensitizer potency in the same model.

In another study by (Jatana 2017a), a panel of metal nanomaterials with various
physicochemical properties was analyzed for effects on chemical-induced ACD both during
sensitization and challenge. When mice were sensitized to dinitrofluorobenzene (DNFB),
co-administration of QD did not impact the severity of the challenge response to DNFB,
irrespective of particle charge. However, QD administration simultaneous to DNFB
challenge did impact the allergic response. Moreover, the effect was dependent on the charge
of the materials. The negatively-charged particles suppressed inflammation, whereas the
positively-charged materials enhanced ear swelling. The authors confirmed that sensitization
to QD did not occur and suggested that variations in skin penetrating capacity of the
differently-charged materials was responsible for the observed effects. The conclusions
regarding a critical role for nanomaterial size and charge on modulation of ACD elicitation
responses is supported by other findings, as well. Suppressive effects on allergic elicitation
have also been demonstrated following applica-tion of 20 nm SiNP and <50 nm AgNP-
containing cream on ACD reactions to DNFB and 2-deoxyurushiol (Jatana 2017a).
Contrarily, exposure to positively-charged functionalized 56 nm SiNP did not augment the
severity of oxazolone-induced elicitation responses when topically applied for five
consecutive days (Ostrowski et al. 2014).
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As highlighted by (Jatana 2017a), ACD responses may be subject to modulation as a result
of chemical madifications induced by interactions with metal nanomaterials. In their study,
the topical application of nanomaterials was subject to removal prior to application of
DNFB. As a result, the particle-specific modulation of allergic skin inflammation was not
reflective of blocked adduct formation. Although metal nanomaterials exhibit
characteristically increased surface reactivity and catalytic potential, their capacity to impact
the chemical properties of skin sensitizing chemicals has not been extensively studied.
However, a few studies have demonstrated the potential for such effects to impact both ACD
sensitization and elicitation. AINP and AuNP have been shown to act as non-protein carriers
of haptens capable of facilitating the generation of hapten-specific adaptive immune
responses /n1 vivo (Ishii et al. 2008; Maquieira et al. 2012). Similarly, topical application of
ointment containing calcium-based nanoparticles has been shown to capture nickel ions by
cation exchange, compromising bioavailability and subsequently preventing the elicitation of
nickel-specific ACD (Vemula et al. 2011).

In addition to ACD, metal nanomaterial effects on IgE-mediated atopic dermatitis have also
been examined. Atopic dermatitis is generally associated with protein allergens, which under
normal circumstances are not capable of penetrating the skin (Smith Pease et al. 2002).
However, 100 nm ZnO NP and 5 nm AuNP have been shown to enhance skin penetration by
albumin and protein drugs (Huang et al. 2010; Shokri and Javar 2015). Likewise, increased
permeability of the skin associated with some metal nanomaterials may represent a
mechanism by which exposure may increase susceptibility to atopic dermatitis onset.

Simultaneous exposure to TiO, NP, AgNP, and SiO, NP during sensitization to house dust
mite (HDM) in atopic dermatitis models has been associated with an amplification of T2
responses. This effect was shown to be more pronounced with decreasing size with respect
to AgNP and SiO, NP, but not for TiO, NP (Yanagisawa et al. 2009; Hirai et al. 2012b; Hirai
et al. 2015). Exposure to 5 nm AgNP during sensitization was associated with an
augmentation of mast cell activity that resulted in more severe skin lesions that appeared
earlier than those induced by 100 nm AgNP (Kang H et al. 2017). Decreases in SiO,NP size
were also associated with enhanced T2 responses, as evidenced by increased thymic
stromal lymphopoeitin (TSLP) and IL-18 production (Hirai et al. 2012b). Decreased particle
size has been associated with increased aggravation of atopic dermatitis skin inflammation
by nonmetal nanoparticles, as well (Yanagisawa et al. 2010).

Metal nanomaterial-induced modulation of allergic inflammation in the challenge phase of
atopic dermatitis has also been demonstrated. Topical application of both 240 and 20 nm
ZnO NP resulted in diminished localized inflammation. However, the smaller particle was
associated with more pronounced suppression of local inflammation, but simultaneous
increases in systemic production of IgE (llves et al. 2014).

An interesting observation by Hirai et al. (2015) highlights a potentially critical variation
between studies that may explain discordant immune effects induced by similar
nanomaterials. distinction between allergy model studies that may contribute to discordant
findings. The authors demonstrated that, in their study, exacerbation of allergic sensitization
was dependent on co-administration of HDM antigen and SiO, NP. When SiO, NP
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agglomerates were administered at a site distal to that of the allergen, the modulation of
antibody production was no longer observed. The dependence of physical associations
between nanomaterial and antigen on the subsequent adaptive immune response has been
similarly demonstrated by FeNP. In multiple studies, intravenous administration of 58 nm
FeNP 1 h prior to subcutaneous ovalbumin (OVA) sensitization resulted in decreased levels
of 1gG; and IgG, and suppression of Tyl and T17 responses in mice (Shen et al. 2011,
2012; Hsiao et al. 2018). Contrarily, when FeNP and OVA were co-administered
intravenously or subcutaneously, enhanced antibody responses were seen in mice (Powles et
al. 2017; Shen | et al. 2018). Similar immune-stimulating effects of FeNP have been
demonstrated when used as an adjuvant by various exposure routes during immunization to
various other antigens in the context of vaccine studies (Pusic et al. 2013; Hoang et al. 2015;
Sungsuwan et al. 2015; Neto et al. 2018; Zhao et al. 2018).

The capacity for the same metal nanomaterial to induce divergent immune effects depending
on its physical association with antigen likely reflect the different mechanisms of immune
modulation associated with prototypical vaccine adjuvants. Some adjuvants exert effects
based on “immune modulating” mechanisms. These adjuvants often bear structural
resemblance to PAMP, which emphasizes their similar mechanisms of innate immune
activation that promote antigen-specific adaptive responses. Since these adjuvants alter the
systemic immune environment, their effects are not dependent on physical association with
the antigen (Singh and O’Hagan 2003). Contrarily, physical association with antigen is
required for adjuvants whose efficacy reflects their capacity to modulate antigen delivery to
the immune system. The strength and nature of the adaptive immune response are heavily
dependent on the dose and duration of antigen exposure to lymphocytes, so many adjuvants
enhance adaptive immune responses by augmenting this process (Johansen et al. 2008).

In accordance with these two divergent mechanisms of sensitization adjuvancy, different
physicochemical properties of metal nanomaterials may be implicated in immune effects
resulting from each mode of action. For example, simultaneous administration of adjuvant
and antigen is often implemented with the intent of depot formation, which increases local
antigen retention (Glenny et al. 1931; Demento et al. 2012). Accordingly, metal
nanomaterial adjuvant effects dependent on this mechanism are subject to influence by
properties involved in antigen trapping, such as size, degree of agglomeration, surface area,
and surface charge (Henriksen-Lacey et al. 2010a; Henriksen-Lacey et al. 2010b; Kaur et al.
2012a, 2012b).

Knowledge gaps in metal nanomaterial effects on skin allergy

Knowledge regarding metal nanomaterial effects on skin sensitization is largely limited to
TiOy NP, SiO, NP, and ZnO NP. Though the selective investigation of these metals is likely
reflective of their significance to consumer skin exposures, titanium, silver, and zinc are not
historically associated with clinically-significant rates of ACD in the general population.
Accordingly, the observation that some of these metals may have increased potential to
induce skin sensitization in nanoparticulate form raises additional concerns over the lack of
investigations into nanomaterials comprised of metals commonly associated with ACD
(nickel, gold, cobalt).
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Metal-based nanomaterials and asthma

Respiratory exposure to nanomaterials from naturally-occurring and anthropogenic sources
has been taking place for centuries; however, the emergence of engineered nanomaterials
and their widespread incorporation into consumer goods pose a risk for inhalation exposures
to higher doses of materials with diverse chemical compositions and unique properties
(Buzea et al. 2007). In this regard, metal nanomaterials of concern for consumers include
many of the materials mentioned above, such as ZnO NP, AgNP, TiO, NP, and SiO, NP, as a
result of their incorporation into construction materials, sunscreen sprays, disinfectants, and
cosmetic powders, which upon use can lead to their inhalation. Workers are at risk for
inhalation exposure to these and other highly-produced metal-based nanomaterials (Table 1)
(Nanomaterials Future Markets 2015). Effects of metal nanomaterials on pulmonary
immunity and asthmatic conditions have been extensively studied and summarized in this
section. In addition to studies reporting adverse immune effects in workers subject to metal
nanomaterial inhalation, animal studies that have generated evidence of potential for
respiratory sensitization and augmentation of asthmatic conditions are discussed. Likewise,
Table 5 summarizes studies characterizing individual metal nanomaterial effects on
pulmonary immunity. Table 6 summarizes studies to examine the effects of metal
nanomaterial physicochemical properties on asthma. Table 7 highlights some processes
involved in respiratory sensitization and elicitation demonstrated to be subject to modulation
by metal nanomaterials.

Human studies demonstrating pulmonary immune effects of metal nanomaterials

A 2014 case study best illustrates the concerns associated with the unknown allergic effects
of metal nanomaterials. In the report, a chemist who accidentally inhaled NiNP in the work-
place subsequently developed clinical symptoms indicative of IgE-mediated respiratory
allergy including throat irritation, nasal congestion, facial flushing, and respiratory distress
upon future encounters with NiNP. The chemist also developed previously-nonexistent
symptoms indicative of T-cell-mediated ACD in response to non-nanoparticulate forms of
nickel in her earrings and belt buckles (Journeay and Goldman 2014). In addition to
reinforcing existing concerns over increased potential for allergic sensitization as a result of
decreased size, the case also emphasized additional concerns reflective of the unique
mechanisms of metal allergy. The case showed that sensitization via one exposure route may
not limit future elicitation reactions to the same tissue; moreover, sensitization by metal ions,
irrespective of original parent material size, may result in elicitation reactions following
exposure to both nano- and bulk-sized metal materials.

Adverse immune effects with implications for allergy have been investigated in human
subjects with risk of inhalation exposure to metal nanomaterials in their workplaces. In one
study, it was shown that workers of nanomaterial-handling facilities in Taiwan exhibited
increased prevalence of sneezing, dry cough, and productive cough compared to workers
with no nanomaterial exposures (Liao et al. 2014). Although the workers were employed by
facilities handling SiO, NP, Fe,0O3 NP, AuNP, AgNP, and TiO,NP, it is unclear whether the
observed respiratory effects were mediated by adaptive immune responses specific to the
metals, or nonspecific irritant mechanisms. Interestingly, increased rates of ACD were also
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observed in the workers of the nanomaterial-handling facilities, but the inciting agents were
not determined. As such, it is unknown if exposure to the nanomaterials induced
sensitization or caused increased susceptibility to ACD development in workers.

Similar studies have also demonstrated that exposure to hanomaterials in the workplace can
cause elevations in various immune-related biomarkers indicative of potential effects on
allergy (Andujar et al. 2014; Glass et al. 2017; Kurjane et al. 2017) For example, elevations
in breath condensate leukotriene (LT) levels were observed in subjects exposed to TiO, NP
aerosol (< 100 nm) in their workplaces (Daniela et al. 2016). The exposed workers had
elevated levels of LTBy, a lipid mediator associated with the recruitment, activation, and
prolongation of survival of leukocytes in the lung, as well as multiple cysteinyl leukotrienes
(i.e. LTCy, LTE4, LTDy), that are potent mediators of bronchoconstriction (Luster and Tager
2004; Zakharov et al. 2016). Although no alterations in lung function were observed in the
exposed workers, elevations in levels of lipid mediators involved in the pathogenesis of
asthma suggest the potential for exposure to TiOoNP in the workplace to influence the
severity of asthmatic conditions.

Collectively, these reports emphasize the potential occupational hazards associated with
metal nanomaterials. Although numerous immune markers have been shown to be
modulated in workers following inhalation exposure to metal nanomaterials, specific
implications for asthma remain unclear. Limitations of human studies arise from
inconsistencies between exposure conditions, subject histories, and the requirement for
noninvasive, measurable endpoints. Accordingly, the effects of metal nanomaterials on
pulmonary immunity and underlying mechanisms have been assessed in animal models
wherein controlled dosing, consistent environments, and additional endpoints have helped
identify some of the potential underlying mechanisms of metal nanomaterial-induced
pulmonary immune effects.

Evidence for increased potential for respiratory sensitization from animal studies

Assessment of respiratory sensitization presents numerous challenges underscored by the
absence of validated /n vivo, in vitro, or in silico approaches for identification of potential
sensitizers. However, biomarkers with proposed utility for /n vivo identification of potential
respiratory sensitizers following pulmonary exposure include IgE and T2 cytokines (de
Jong et al. 2009; Chary et al. 2018). These markers have not been employed for direct
evaluation of respiratory sensitization potential by metal nanomaterials; however, numerous
studies have reported increased IgE levels following /n vivo pulmonary exposure to TiO, NP,
PtNP, FeNP, AgNP, and ZnO NP (Park et al. 2009; Park et al. 2010; Cho et al. 2011; Huang
et al. 2015; Seiffert et al. 2015). Many of the same nanomaterials have also been associated
with increased T2 cytokine levels (i.e. IL-4, IL-5, IL-13) following pulmonary exposure
(Pettibone et al. 2008; Park 2010; Marzaioli et al. 2014). Although these findings are
suggestive of the potential for metal nanomaterials to induce asthma, since the specificity of
IgE molecules was not determined in any studies, the capacity for respiratory sensitization
remains speculative.

Assessment of respiratory sensitization potential is further complicated by the absence of an
AQP specific to the events associated with asthma development. Moreover, discrepancies in
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some key events involved in asthma inception by LMW and HMW agents indicate the
potential requirement for multiple respiratory sensitization AOP. However, many steps are
known to be conserved with respect to sensitization of the skin and lungs; knowledge of
metal nanomaterial effects on these processes can provide potential insight regarding their
potential to cause asthma.

The induction of respiratory sensitization is ultimately dependent on antigen bioavailability.
Although it remains unclear whether nano-scale dimensions of metals increase the
likelihood for absorption following dermal exposures, the respiratory tract presents a portal
of entry known to be increasingly susceptible to smaller materials (Mercer et al. 2018).
Nano-materials exhibit a characteristically increased level of “dustiness,” a property which
describes the propensity for a material to become airborne following disruption (Evans et al.
2013). Accordingly, the potential for aerosolization and inhalation of metal nanoparticles
increases with decreasing size, thereby overcoming one of the limiting steps of respiratory
sensitization associated with larger-sized metal particles.

Sensitization of the lungs also requires interactions between the sensitizing agent and APC.
The respiratory tract is equipped with an expansive repertoire of defense mechanisms that
prevent such interactions, but metal nanomaterials have been shown to have increased
capacity to circumvent many of these mechanisms, increasing their potential for uptake by
DC. In the upper airways, a layer of mucus lining the lumen functions to trap inhaled
antigens and facilitate their translocation out of the trachea by the mucociliary escalator
(Moldoveanu et al. 2009). Evasion of the ~5 mm thick mucus layer has been associated with
nanomaterial physicochemical properties including size, surface modification, and surface
charge (Samet and Cheng 1994; Yang et al. 2008; Liu et al. 2015; Murgia et al. 2016).
Generally, hydrophilic, neutrally-charged nanomaterials with smaller diameters have been
shown to penetrate mucus to a greater degree than counterparts with opposing properties
(Schuster et al. 2013).

In the lower airways, a similar mechanism of antigen neutralization is facilitated by
pulmonary surfactant (Chroneos et al. 2010). In addition to optimizing the mechanics of
respiration, surfactant contains proteins capable of binding aeroallergens, accelerating their
clearance, and preventing their uptake by APC, thereby inhibiting antigen-specific responses
(Malhotra et al. 1993; Wang et al. 1996; Hohlfeld 2002; Ruge et al. 2011). Two of these
proteins, surfactant protein (SP)-A and SP-D, have been shown to bind to various metal
nanomaterials leading to accelerated clearance by phagocytic mechanisms (Ruge et al.
2011). Accordingly, nanomaterials with properties that deter binding to surfactant proteins,
such as surface charge, may exhibit increased potential for evasion of clearance by this
mechanism, increasing potential for interaction with lung DC (Schulze et al. 2011).

Increased potential for antigen/nanomaterial interaction with DC can also result from
evasion of pulmonary macrophage-mediated clearance. Uptake and sequestration of antigen
by pulmonary macrophages results in intracellular chemical degradation or physical
translocation out of the lungs, preventing their interception by DC (Elder and Oberdérster
2006). Nano-materials can evade clearance by this mechanism by numerous effects. First,
since macrophages have been shown to selectively phagocytose nanomaterials according to
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size, charge, and surface modification, physicochemical properties may contribute to their
persistence in the respiratory tract. Their clearance may also be compromised as a result of
selective cytotoxic effects on pulmonary macrophages and subsequently fewer viable
macrophages capable of neutralizing the nanoparticles. Pulmonary macrophage cytotoxicity
has been associated with physicochemical properties including morphology, surface charge,
and rate of dissolution (Oh et al. 2010; Hamilton et al. 2014; Shim et al. 2017). Metal
nanomaterial-induced alterations in phagocytic activity of pulmonary macrophages, as
demonstrated by TiO, NP, ZnO NP, and AINP, may also contribute to evasion of clearance
(Wagner et al. 2007; Liu et al. 2010; Liu H et al. 2013). In addition to compromising the
clearance capacity of the phagocytic system on a cellular level, nanomaterials are also
associated with maximizing the clearance capacity of the collective phagocytic system.
Volumetric loading of alveolar macrophages following inhalation of nanomaterials decreases
the efficiency of clearance, extending biopersistence, and increasing the potential for
interception by DC (Oberdorster et al. 1992; Blank et al. 2017).

Metal nanomaterial cytotoxic effects on pulmonary macrophages may also promote
sensitization by additional mechanisms. Since alveolar macrophages are known to
antagonize T2 responses in the lung and downregulate APC functions, cytotoxic effects
may disrupt the maintenance of an immunological tolerant state (Tang et al. 2001).
Moreover, their depletion leads to significantly increased recruitment of DC and DC
precursors to the lungs (Holt et al. 1993; Jakubzick et al. 2006). Numerous metal
nanomaterials are also known to trigger the release of alarmins including IL-1f and —1a by
alveolar macrophages; in turn, these can activate DC and facilitate sensitization (Braydich-
Stolle et al. 2010; Scherbart et al. 2011; Sandberg et al. 2012; Hamilton et al. 2014; Rabolli
et al. 2014; Arai et al. 2015).

Similar to their roles in the development of skin allergy, epithelial cells of the respiratory
tract are integral in the development of asthma, and their disruption by inhaled materials can
have profound influence on the early events of sensitization (Bergamaschi et al. 2006). A
major function of airway epithelial cells is to serve as a physical barrier between inhaled
agents that deposit in the airway lumen and DC in the epithelium (Hammad and Lambrecht
2015). The importance of barrier integrity in preventing the development of asthma is
illustrated by the barrier-disrupting proteolytic activity shared by many aeroallergens with
high rates of sensitivity in the population (Kauffman et al. 2006; Lambrecht and Hammad
2012). The frequent observation that metal nanomaterials are capable of inducing
cytotoxicity to pulmonary epithelial cells suggests their potential to increase permeability
and passage of antigens from the airway lumen to compartments associated with DC.

Airway epithelial cell cytotoxicity has also been associated with the release of alarmins that
have potential to promote DC activation and sensitization. Similar to keratinocytes in the
skin, the mechanism of cell death can critically influence the nature of the resultant immune
response. For example, the necrotic cell death following pulmonary exposure to beryllium
results in the release of mediators including cellular DNA, which is recognized as a DAMP
by TLR-9, and promotes the unique Ty1-mediated effects associated with chronic beryllium
disease (McKee et al. 2015). NiNP, AgNP, and CoNP have been shown to induce similar
necrotic cell death of bronchial and alveolar epithelial cells (Holt et al. 1993; von Garnier et
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al. 2005; de Haar et al. 2008; Capasso et al. 2014; Ortega et al. 2014). Contrarily, ZnO NP,
CuO NP, TiO, NP, and CrNP have all been associated with induction of apoptotic cell death
in pulmonary epithelial cells (Park et al. 2007, 2008; Ahamed et al. 2011; Sun et al. 2012;
Senapati et al. 2015). This effect may further influence the development of respiratory
allergy since uptake of these cells is a property exclusive to CD103* DC, a subset of DC
associated with cross-presentation and the subsequent induction of CD8"effector responses
(Desch et al. 2011).

Incorporation of metal nanomaterials into asthma models

The impact of metal nano-material exposure prior to sensitization has only been addressed
by a few studies using asthma models. Aspiration exposure to ZnO NP, TiO, NP, NiO NP,
CuO NP, or SiO, NP 1 d before inhalation sensitization to OVA was followed by inhalation
challenge and subsequent assessment of asthmatic severity. Soluble metal nanomaterials
(NiO NP, ZnO NP, and CuO NP) were associated with elevations in OVA-specific IgE,
whereas insoluble SiO, NP and TiO, NP were not. Subsequent investigations confirmed the
importance of metal ion release in the adjuvant effects on sensitization. The increase in
OVA-specific IgE production associated with soluble NiO NP was not conserved in response
to insoluble NiO microparticles in the same model (Horie et al. 2015). However, ZnCl, also
did not exert the same increase in OVA-specific IgE caused by ZnO NP. As a result, it was
concluded that continuous ion release from nanoparticles was required for the induction of
the observed effects (Horie et al. 2016). Exposure to residual oil fly ash particles prior to
allergen sensitization has also been associated with adjuvant effects attributable to soluble
metal constituents (Lambert et al. 2000).

Concurrent exposure to metal nanomaterials during allergen sensitization has been explored
extensively in order to evaluate the potential adjuvant effects of metal nanomaterials on
asthma development. This concept has been explored with respect to both systemic and
respiratory sensitization routes, as well as independent and dependent of allergen challenge.
In the absence of allergen challenge, evaluation of sensitization achieved by intraperitoneal
injection is limited to assessment by systemic markers, such as antigen-specific IgE and
cytokine levels. Accordingly, co-administration of AgNP and ZnO NP with antigen has been
associated with elevated levels of allergen-specific IgE, as well as increased levels of T2
cytokines (Matsumura et al. 2010; Xu et al. 2013). As demonstrated with SiO, NP, enhanced
antibody production has been associated with both increasing dose and decreasing particle
size (Toda and Yoshino 2016).

Though few studies have correlated metal nanomaterial properties to adjuvant effects on
intraperitoneal sensitization independent of allergen challenge, existing findings are
conducive with studies using larger metal particles and nonmetal nanoparticles (Naim et al.
1997; Granum 2001b). The impact of the most extensive number of physicochemical
properties with respect to adjuvant effects on OVA sensitization use polystyrene
nanoparticles (PSP). Nygaard et al. (2004) used PSP ranging from 58 nm to 11.4 ym to
evaluate the influence of particle size, mass, surface area, and particle number. Similarly,
Granum et al. (2000) used six sizes of spherical PSP to administer doses with constant mass
(12.25 pg), size (0.1 pm), particle number (8 x 1019), or surface area (1300 cm?2). Both
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studies showed that serum OVA-specific IgE levels best correlated with particle number and
surface area (Granum et al. 2001a; Nygaard et al. 2004).

Similar adjuvant effects have been observed following respiratory sensitization and co-
exposure to TiO, NP, SiO, NP, and ZnO NP (de Haar et al. 2006; Huang et al. 2015).
Increases in OVA-specific IgE and T2 cytokine levels were similarly associated with
decreasing size of SiO, NP (Yoshida et al. 2011). Moreover, SiO,NP surface properties were
shown to impact sensitization independent of allergen challenge. Intranasal exposure to three
variations of SiO, NP (spherical, mesoporous, and PEGylated) simultaneous to OVA
sensitization exacerbated pathological changes, inflammatory cell influx, and T2 cytokine
responses. These effects were specific to the unique surface chemistry of each type of SiO,
NP, but the most severe responses were associated with the nanoparticle with the highest
surface area (Han et al. 2016).

The absence of allergen challenge in these studies helps elucidate the direct effects of metal
nanomaterials on sensitization processes. However, another approach to evaluate the same
effect involves evaluation of allergic parameters collected in response to allergen challenge.
Studies utilizing this approach have similarly demonstrated enhanced asthmatic responses in
OVA-challenged mice when intraperitoneal sensitization occurred simultaneous to TiO, NP
and ZnO NP (Larsen et al. 2010; Roy et al. 2014a; Roy et al. 2014b; Mishra et al. 2016).

Although the observed effects may reflect residual impacts of metal nanomaterial respiratory
exposure during sensitization, similar adjuvant effects on elicitation responses have been
observed following respiratory sensitization and simultaneous metal nanomaterial exposure.
Simultaneous administration of SiO,NP, CeO,NP, QD, and TiO,NP with allergen during
sensitization led to enhanced asthmatic response severity, as measured by antigen-specific
antibody levels, inflammatory cell influx, and T2 cytokine levels after challenge
(Brandenberger et al. 2013; Meldrum et al. 2018; Vandebriel et al. 2018; Scoville et al.
2019). Studies using similar sensitization procedures and endpoints have also implicated
TiO, NP crystal structure in adjuvant effects on sensitization (de Haar et al. 2006;
Vandebriel et al. 2018).

Metal nanomaterial exposure has also been incorporated into the challenge phase of asthma
to evaluate potential modulation of asthmatic responses in established asthmatic conditions.
Although some metals, including CuO NP, have been exclusively shown to induce
significant aggravating effects on elicitation responses, others, including AuNP, appear to
exert protective effects on asthmatic responses (Barreto et al. 2015; Park et al. 2016; Omlor
et al. 2017). Contrarily, other metal nanomaterials, including TiO, NP, have been associated
with divergent effects on allergen challenge that appear increasingly susceptible to variation
during this phase of asthma. Effects have been reported to be differentially induced
according to dose, duration of exposure, and endpoints of assessment (Rossi et al. 2010;
Hussain et al. 2011; Jonasson et al. 2013; Kim et al. 2017).

Similarly, after OVA sensitization via intraperitoneal injection, AgNP exposure during
allergen challenge has been reported to induce various aggravating and attenuating effects on
allergic inflammation. Inhalation exposure to 6 nm AgNP was shown in multiple studies to
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suppress inflammatory cell influx, airway hyper-reactivity (AHR), mucus hypersecretion,
and other measures of asthmatic responses (Park, Kim, Jang, et al. 2010; Jang et al. 2012).
Contrarily, in another study with very similar exposure conditions, 33 nm AgNP caused
increased airway response, inflammatory cell influx, and OVA-IgE levels over control
animals (Chuang et al. 2013; Su et al. 2013). The discrepancies between these studies may
be attributable to AgNP size difference, as well as potential variations in particle coating,
both of which have been associated with differ-ential effects on asthmatic responses
(Alessandrini et al. 2017). Additionally, the first two studies used the Ty1-dominant
C57BL/6 mouse strain, whereas the second used a T2-biased BALB/c strain (Jones et al.
2013). Strain-specific immune responses following respiratory exposure to metal
nanomaterials during allergen challenge have been demonstrated in other studies, as well
(Gustafsson et al. 2014).

Studies using SiNP and ZrO NP with variations in surface properties demonstrate that when
administered during allergen challenge, surface properties of nanomaterials can differen-
tially aggravate allergic inflammation (Marzaioli et al. 2014; Park, Sohn, et al. 2015;
Vennemann et al. 2017). It has been suggested that particles with higher oxidant potential
amplify asthmatic inflammation to a greater degree, which would implicate physicochemical
properties such as surface modification in these effects (Li et al. 2009).

Potential mechanisms of asthma augmentation by metal nanomaterials

Although asthma models have characterized the potential effects of metal nanomaterial
exposure on asthmatic processes, many of the underlying mechanisms of these observed
effects remain unclear. However, findings from other studies suggest several mechanisms
may be associated with the observed effects of metal nanomaterials on the augmentation of
asthma.

Respiratory exposure to metal nanomaterials may increase susceptibility to sensitization by
aeroallergens by similar mechanisms previously proposed to contribute to their respiratory
sensitization potential. Release of alarmins by airway epithelial cells and resident immune
cells, disruption of the Ty1/Ty2 balance in the lung, and amplification of oxidative stress by
metal nanomaterials may also generate adjuvant effects on sensitization. Similarly, FeNP,
TiO, NP, and SiNP have all been shown induce the release of T2 cytokines including
IL-33, TSLP, GM-CSF, and IL-25 by airway epithelial cells, which are known to promote
DC maturation (Hussain et al. 2009; Val et al. 2009; Mano et al. 2013; Park, Sohn, et al.
2015).

Evidence also suggests metal nanomaterial exposure can modulate inflammatory pheno-
types of existing asthmatic conditions. Two major heterogeneous asthma phenotypes differ
based on the presence of neutrophil (TH1/TH17)- or eosinophil (TH2)-dominated
inflammation (Fahy 2009; Yu and Chen 2018). Particulate and soluble metals are known to
differentially impact the nature of existing allergic airway inflammation by skewing this
balance (Schneider et al. 2012). Dissolution kinetics also appear influential in this regard, as
CoNP, NiNP, ZnO NP, and CuO NP and their corresponding ions have been shown to
differentially recruit eosinophils and neutrophils to the lungs of rats after exposure (Cho et
al. 2011; Jeong et al. 2015).
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Modulation of elicitation response severity by metal nanomaterials may emerge as a result of
modulation of mast cell activity. As a major effector cell in IgE-mediated allergic responses,
mast cells have been shown to be potential targets of metal nanomaterial-induced adverse
effects /n vitro (Feltis et al. 2015; Johnson et al. 2017; Alsaleh and Brown 2018). AgNP,
CuO NP, SiO, NP, and TiO, NP have all been shown to induce IgE-independent mast cell
degranulation depending on physicochemical properties including size, surface area, charge,
shape, and the presence of adsorbed surface proteins (Marquis et al. 2011; Aldossari et al.
2015; Alsaleh et al. 2016; Johnson et al. 2017). Modulation of IgE-dependent mast cell
degranulation has also been demonstrated by some of the same nanomaterials. TiO, NP,
AUNP, CeO, NP, ZnO NP, and FeNP have been shown to modulate interactions between
allergen and surface-bound IgE molecules, interfering with dimerization and subsequent
degranulation (Huang et al. 2009; Ortega et al. 2015). Similarly, mast cell uptake of metal
nanomaterials has been associated with modulation of intracellular calcium signaling
involved in mast cell degranulation (Amin 2012; Chen et al. 2012). Accordingly, differential
ion release by bulk ZnO particles, ZnO NP, and soluble ZnSO4 has been correlated with the
propensity for OVA-sensitized rat mast cells to degranulate when co-exposed with OVA
(Yamaki and Yoshino 2009; Feltis et al. 2015).

Furthermore, TiO, NP and AuNP have been shown to alter the exocytic kinetics of granule
secretion by mast cells (Marquis et al. 2009). The qualitative and quantitative profile of
granule contents has also been shown to be subject to modulation by some metal
nanomaterials. The number of molecules per granule has been shown to be impacted by
SiO, NP as a function of porosity and surface area (Maurer-Jones et al. 2010). Variations in
vesicle mediator content has been shown to be augmented by AuNP (Marquis et al. 2009).
Since the contents of mast cell granules contribute to vascular permeability and
inflammatory cell recruitment, these alterations can greatly impact the severity of allergic
elicitation (Dudeck et al. 2011; Weber et al. 2015).

Aggravation of existing asthmatic conditions may also involve non-immunological
mechanisms, such as metal nanomaterial-induced alterations to normal physiological
processes. For example, increased mucus production by epithelial cells is a hallmark
symptom of the early and late phase asthmatic response (Erle and Sheppard 2014). The
observation that TiO,NP and CuONP both increased mucin secretion in human epithelial
cells suggests potential to exacerbate asthmatic conditions by contributing to obstruction of
airways (Chen et al. 2011; Park et al. 2016). Similarly, TiO, NP, AuNP, and AgNP have
been shown interfere with optimal pulmonary surfactant functioning, which can cause AHR
and increased resistance to airflow (Hohlfeld et al. 1999; Hohlfeld 2002; Bakshi et al. 2008;
Schleh et al. 2009; Zhang et al. 2018). AHR may also be modulated by metal nanomaterials
as a result of alteration of airway smooth muscle (ASM) contractility. ZnO NP, CuO NP, and
TiO, NP have all been shown to alter human ASM mechanical function /in vitro (Berntsen et
al. 2010). Similarly, CoFe,04 NP were shown to potentiate both histaminergic and
cholinergic ASM contractility /7 vivo, which has the capacity to exacerbate symptoms of
asthma associated with bronchoconstriction (Kapilevich et al. 2012).

Metal nanomaterial exposure may also exacerbate established asthmatic conditions by
accelerating the progression of pathological alterations associated with chronic asthmatic
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conditions. The repetitive induction and resolution of inflammation induced by asthmatic
elicitation leads to anatomical alterations referred to as airway remodeling (Fehrenbach et al.
2017). Histological indicators of these alterations have been reported to be exacerbated by
various metal nanomaterials including SiNP (Han et al. 2011). Similarly, cellular indicators
of accelerated airway remodeling have been implicated in response to many metal
nanomaterials. For example, fibroblast accumulation and increased extracellular matrix
deposition is a common contributor to airway remodeling and has been observed in response
to NiNP, SiO, NP, and CeO, NP exposure (Warner and Knight 2008; Han et al. 2011; Ma et
al. 2012; Armand et al. 2013; Glista-Baker et al. 2014).

Knowledge gaps in metal nanomaterial effects on asthma

Despite the known capacity for many metals to induce IgE-mediated asthma following
inhalation, the potential for metal nanomaterials to induce sensitization of the respiratory
tract remains completely unknown. Several other interesting aspects of pulmonary immunity
have not been widely addressed with respect to metal nanomaterials, and may have
relevance to current observations regarding their effects on asthma. The microbiome is
known to significantly impact numerous aspects of allergic disorders, and while some metal
nanomaterials associated with antimicrobial activity have been shown to alter the pulmonary
microbiome, the implications for asthma remain unknown (Alessandrini et al. 2017; Poh et
al. 2018). Similarly, the effects of metal nanomaterials on innate lymphoid cells also remain
largely unstudied, but should not continue to be neglected, given the importance of this cell
type in allergic disorders. Finally, the capacity for metal nanomaterials to disrupt or prevent
the development of immunological tolerance has not been explored, and may be influential
in both phases of asthmatic conditions.

Effects of metal nanomaterials on immune cells and allergic processes in

vitro

In vivo studies have demonstrated the capacity for metal nanomaterials to augment
numerous immunological processes that result in functional implications for allergic disease.
However, /in vitro investigations have helped elucidate some of the underlying mechanisms
responsible for /n vivo observations. In this section, major findings regarding the role of
metal nanomaterial physicochemical properties on molecular and cellular processes with
implications for both ACD and asthma are summarized.

Effects on antigen immunogenicity

Many physicochemical properties associated with the molecular and cellular processes that
confer antigen immunogenicity are subject to alteration following interactions with
constituents of their environment. In this regard, the immunogenicity of metal nanomaterials
may be significantly altered as a result of biocorona formation. Following entry into
biological media, macromolecules present in the media interact with and adsorb to the
surface of nanomaterials within minutes, forming a layer that defines the bio-identity of the
nanomaterial (Corbo et al. 2016). The qualitative profile of adsorbed constituents and
quantitative strength of association have been shown to be influenced by nanomaterial
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properties including size, charge, morphology, surface modification, and hydrophilicity,
among other properties (Lundqvist et al. 2008; Dobrovolskaia et al. 2014).

Independent of adsorbed constituents’ identities, macromolecule associations with metal
nanomaterial surfaces may induce alterations in physicochemical properties associated with
their bioactivity (Dobrovolskai et al. 2009b; Yin et al. 2015). For example, protein
adsorption to 25 nm FeNP was associated with a 5-fold increase in hydrodynamic size,
which can impact a number of biological effects, such as propensity for cellular uptake
(Calatayud et al. 2014). Similarly, adsorption of proteins can mask reactive surfaces of metal
nanomaterials, attenuating ROS generation, and subsequently inhibiting a major biochemical
mechanism involved in the release of alarmins (Ilinskaya and Dobrovolskaia 2016).

Contrarily, surface adsorption of macromolecules may alter the biological activity of metal
nanomaterials in a manner that is dependent on the adsorbed constituent profile. Endo-
genous proteins, including immunoglobulins, cytokines, and complement proteins are all
constituents of the serum and lung lining fluid known to bind metal nanomaterial surfaces
(Neagu et al. 2017). The binding of complement protein C3b and IgG to nanomaterial
surfaces has been shown to confer recognition by complement and Fc receptors, accelerating
clearance by phagocytes, and limiting the potential of the nanomaterial to induce other
immune effects (Beduneau et al. 2009; Moghimi et al. 2012; Frohlich 2015). Adsorption of
exogenous agents can also lead to alterations in nanomaterial immunogenicity. One of the
most notable examples is endotoxin (LPS), a frequent microbial contaminant of
nanomaterial surfaces that is capable of activating innate immune cells, and inducing pro-
inflammatory signaling via the TLR-4 pathway. Adsorption of LPS to nanomaterial surfaces
has been shown to enhance inflammatory responses to many metal nanomaterials by lung
epithelial cells, and various immune cells (Shi et al. 2010; Liu et al. 2012; Bianchi et al.
2017; Li et al. 2017; Ko et al. 2018). The chemical structure of LPS favors its adsorption to
hydrophobic, positively-charged metal nanomaterial surfaces, indicating a role for
physicochemical properties such as surface modification in the propensity for associations
with immunogenic exogenous molecules such as LPS (Gorbet and Sefton 2005; Li et al.
2017).

Although biocorona formation can augment the immunological fate of a nanomaterial, the
interactions may also facilitate alterations in immunogenicity of the adsorbed constituents.
Deng et al. (2010) showed that functionalized AuNP were capable of binding fibrinogen
independent of nanoparticle size, but certain sizes of AUNP induced conformational changes
in the protein. Subsequent alterations in protein structure conferred its recognition by the
Mac-1 receptor, subsequently activating NF-xB signaling in innate immune cells. Similarly,
Bastus et al. (2009) demonstrated that while macrophages did not recognize AuNP or two
biomedically-relevant peptides individually, their conjugation facilitated recognition by
TLR-4 and the subsequent induction of pro-inflammatory cytokine production. Since these
signaling pathways play critical roles in many of the adjuvant effects mentioned in previous
sections, interactions between metal nanomaterials and host proteins can generate novel
sources of immunogenicity that may promote allergic processes.
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The generation of metal antigens /n vitro has been shown to be impacted by the unique
physicochemical properties of metal nanomaterials. The size-specific increase in surface
energy of TiO, NP was shown to promote associations between the metal and human serum
albumin, resulting in increased bioavailability (Vamanu et al. 2008). This altered propensity
for inter-actions with host proteins contributed to the observation that titanium antigens
generated from ionic and nanoparticulate forms of TiO, induced differential proliferation of
CD4* and CD8™ T-lymphocytes /n vitro (Hol et al. 2018).

Effects on processes involved in sensitization

As the primary APC involved in allergic sensitization, the capacity for metal nanomaterials
to modulate DC activity represents a prominent mechanism by which allergic sensitization
can be impacted (Jia et al. 2018). Since many sensitizing agents are known to induce both
antigen-specific and nonspecific signals to DC following exposure, DC activation is a step of
the dermal sensitization AOP used for /n vitro identification of potential sensitizers.
Accordingly, the h-CLAT method has been validated for use by the OECD to determine the
skin sensitizing potential of agents. In this assay, undiffer-entiated THP-1 human monocytic
leukemia cells are exposed to an agent for 24 h and their activation status is subsequently
assessed by quantification of CD86 and CD54 activation marker expression (Ashikaga et al.
2002, 2006; Nukada et al. 2012).

The h-CLAT assay has not been employed to evaluate the sensitizing potential of any metal
nanomaterials; however, several studies have investigated metal nanomaterial effects on
undifferentiated THP-1 cells following a 24-h exposure, and reported activation marker
expression. Accordingly, up-regulation of CD86 expression was observed following
exposure to surface-modified FeNP, SiO, NP, and mixed-metal alloy nanoparticles (Liu, Y et
al. 2013). de Marzi et al. (2017) exposed THP-1 cells to a wide range of SiO; particle sizes
(10-1430 nm); while all particles promoted activation marker expression, the 240 nm SiO,
particles induced the greatest degree of CD80 expression. Similar findings were reported by
an investigation that assessed the potential for metal debris released from orthopedic
implants to trigger immune activation. Both ~2 mm cobalt-chromium-molybdenum alloy
particles and soluble metal ions induced elevations in THP-1 co-stimulatory molecule
expression, suggesting that a wide range of metal particle sizes have the capacity to induce
immune effects involved in allergic sensitization (Caicedo et al. 2010; de Marzi et al. 2017).
Contrarily, no elevations in THP-1 expression of CD86 or CD54 were observed in response
to 100 nm AgNP exposure (Galbiati et al. 2018).

Though CD86 and CD54 are the validated biomarkers indicative of sensitizing potential in
the THP-1 line, limited reports have evaluated these specific markers following metal
nanomaterial exposure. However, other markers indicative of DC activation, such as MHC
I, CD11b, CD14, CCR2, and CCR5 have been reported to be up-regulated in response to
exposures to ZnO NP and FeNP (Prach et al. 2013; Matuszak et al. 2015). Similarly,
modulation in expression of 60 genes — several of which were correlated to monocyte
differentiation and maturation — were observed in response to PtNP exposure (Gatto et al.
2018).
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The THP-1 cell line has also been used to identify potential skin sensitizers /n vitrobased on
a unifying property of rapid ROS production following exposure to skin sensitizing
chemicals (Miyazawa and Takashima 2012). A similar response has been demonstrated in
the cell line following exposure to < 100 nm silver-copper alloy nanoparticles, AgNP, CoO
NP, PANP, and NiNP (Monprasit et al. 2018). The degree of ROS production by THP-1 cells
has been correlated to properties including particle size and corona presence, as well as
exposure dose and duration (Foldbjerg et al. 2009; Casals et al. 2011; Neubauer et al. 2015).
Subsequent activation of the p38 MAPK signaling pathway, alterations in expression of
HMOX1 and other oxidative stress genes have also been used as /n vitro biomarkers
suggestive of sensitizing potential. Numerous metal nanomaterials have been associated with
these effects on THP-1 cells, which suggests their potential to activate DC and promote
sensitization (Mohamed et al. 2011; Khatri et al. 2013; McConnachie et al. 2013;
Boonrungsiman et al. 2017).

The potential for metal nanomaterials to induce DC activation has been more extensively
examined using primary DC than the cell lines used in the validated assays (Kang and Lim
2012). Although the expression of activation markers in murine bone marrow-derived DC
(BMDC) or human monocyte-derived DC (MDDC) has not been validated by OECD for use
in determining sensitization potential /7 vitro, several studies have reported their capacity to
accurately predict sensitizers (Tuschl et al. 2000; Pepin et al. 2007). Accordingly, TiO, NP,
ZnO NP, and SiO, NP have been associated with increased expression of CD80 and CD86
by murine BMDC with respect to size, surface chemistry, and crystallinity (Palom€aki et al.
2010; Heng et al. 2011; Winter et al. 2011; Zhu et al. 2014; Winkler et al. 2017; Vandebriel
et al. 2018).

Nanomaterial-induced modulated DC activity can also influence sensitization indepen-dent
of their capacity to induce phenotypical maturation. For example, uptake of AuNP and
AgNP resulted in an enhanced capacity for DC maturation in response to other immune
stimuli (Orlowski et al. 2018). This finding suggests uptake of antigens normally incapable
of activating DC may trigger their maturation in the presence of nanomaterials. In addition,
accumulation of metal nanomaterials has been proposed to interfere with antigen processing
and presentation by DC (Thiele et al. 2003; Humeniuk et al. 2017).

Polarization of DC and the subsequent preferential generation of Ty1/T2 effector T-cells is
another step in the development of allergy that has been shown to be susceptible to
modulation by nanomaterials. Dermal and respiratory sensitizers are associated with
divergent oxidative stress responses that induce selective alterations in three major signaling
pathways responsible for DC polarization (Mizuashi et al. 2005; Antonios et al. 2009).
Polarization of DC towards Ty1-promoting activity has been associated with the propensity
for skin sensitizers to react with cytoplasmic glutathione following which, rapid depletion
leads to ROS accumulation. The rapid induction of oxidative stress induced by contact
sensitizers is responsible for the selective activation of the p38 MAPK and JNK signaling
pathways within minutes of encounter (Nakahara et al. 2006). Contrarily, polarization of DC
towards T2-dominant responses has been associated with delayed induction of oxidative
stress resulting from the preferential association of respiratory sensitizers with intracellular
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amine groups (Ferreira et al. 2018). Subsequently, selective activation of the NF-xB and
ERK pathways occurs.

Knowledge of these pathways and their differential activation explain the observation that
metal nanomaterials with opposing catalytic properties induce different polarization profiles
in DC /n vitro. The oxidant capacity of TiO, NP resulted in potentiation of DC maturation
leading to a T1-biased responses, whereas treatment with the anti-oxidant surface activity
of CeO, NP resulted in secretion of anti-inflammatory IL-10 and a T2-dominant T-cell
profile (Schanen et al. 2013). FeNP, AuNP, and GANP have also been associated with
modulation of DC polarization /n vitro with respect to size and surface chemistry (Yang et
al. 2010; Vallhov et al. 2012; Tomi c et al. 2014; Hoang et al. 2015).

Effects on processes involved in elicitation of allergy

Metal nanomaterials have been shown to have potential to influence elicitation reactions
specific to both metals and environmental proteins /n vitro. With respect to metal allergy,
PBMC isolated from women with established allergic sensitivity to palladium were
challenged with either 5-10 nm PdNP or palladium salts /n vitro (Reale et al. 2011).
Variations in TNFa and IL-10 release were noted between exposures, indicating a potential
role for metal solubility on metal-specific allergy elicitation. With respect to environmental
allergens, basophils isolated from patients with established sensitivity to common
environmental allergens including birch pollen, timothy grass pollen, and house dust mite
were exposed to AuNP-conjugated with corresponding allergenic proteins. Stable coronas
were formed by all three allergens, but binding of allergen to AuNPs caused enhanced
activation of basophils in response to house dust mite challenge, as well as birch pollen in
some individuals (Radauer-Preiml et al. 2016).

Although lymphocyte cytotoxicity is an immunotoxic effect most often associated with
immunosuppression, as major effector cells of both IgE and T-cell-mediated allergic
responses, this effect has potential to impact allergic disorders, as well. Accordingly, many
metal nano-materials have been shown to be cytotoxic and genotoxic to human and murine
lymphocytes /n vitro. Interestingly, T- and B-lymphocytes have been shown to be more
resistant to adverse effects of ZnO NP compared to other immune cell types (Hanley et al.
2009). Although ion release from ZnO NP and PdNP was correlated to cytotoxicity and
alteration in gene expression, DNA damage induced by CoNP was shown to be more severe
than that induced by Co ions (Jiang et al. 2012; Tuomela et al. 2013; Petrarca et al. 2014;
Simon-Vazquez et al. 2016). Susceptibility to cytotoxicity was shown to be reflective of cell
cycle status, explaining the finding that memory T-cells were more sensitive to metal
nanomaterial effects compared to naive T-cells (Hanley et al. 2009; Shahbazi et al. 2013).

Modulation of T-lymphocyte activity by metal nanomaterials also has the potential to
significantly influence allergic processes. PANP, AuNP, CoNP, and GANP have all been
shown to induce differential Ty1/TH2-biased cytokine production by lymphocytes /n vitro
dependent on size, solubility, and hydrophobicity (Petrarca et al. 2006; Liu et al. 2009;
Boscolo et al. 2010; Moyano et al. 2012). FeNP suppressed the activity of Kv1.3 channels,
which suggests a potential mechanism of lymphocyte cell signaling modulation (Yan et al.
2015). Additionally, delays in proliferation, altered mitogen responses, and morphological
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changes have also been observed by lymphocytes following exposure to various metal
nanomaterials (Shin et al. 2007; Beer et al. 2008; Liptrott et al. 2014; Devanabanda et al.
2016).

Knowledge regarding effects of metal nanomaterials specifically on B-cells in vitrois
limited to AuUNP, which have been shown to be size-dependently taken up by B-cells,
causing alterations in NF-xB and blimp1/pax5 signaling pathways, and altered secretion of
immune-globulins in a size-dependent manner via (Sharma et al. 2013; Lee et al. 2014). The
potential for metal nanomaterials to directly alter B-cell processes, such as antigen-specific
interactions with T-cells, isotype switching, and affinity maturation, events critical to their
effector functions in IgE-mediated allergic disorder such as asthma, remains largely
unstudied (Luo et al. 2015).

Knowledge gaps in metal nanomaterial effects on immune cells and processes in vitro

Important
studies

Formation of the nanomaterial biocorona has been almost exclusively investigated with
respect to the adsorption of proteins. However, nanomaterials are also subject to interactions
with other macromolecules present in biological fluids, such as nucleic acids and lipids.
Adsorption of these molecules may have notable impacts on the immune effects of
nanomaterials since different nucleic acids are alarmins recognized by PRR and lipid
mediators play critical roles in many aspects of allergic disorders (Schauberger et al. 2016;
Muller et al. 2018). Accordingly, more research should be directed towards investigating the
biological implications of surface-adsorbed macromolecules other than proteins. Similarly, it
has been suggested that metal nanomaterials may act as soluble or particulate antigens, but
the dynamics of metal antigen generation remains largely unstudied with respect to
nanoparticles.

considerations for future metal-based nanomaterial allergy

The potential for metal-based nanomaterials to induce immune effects with implications for
allergic disease following exposure by routes other than dermal contact or inhalation is a
significant knowledge gap. Nanomaterials are being increasingly incorporated into foods,
beverages, supplements, and packaging, rendering ingestion exposures an increasing
concern (Chaudhry et al. 2008). Ingestion of metal nanomaterials has been associated with
altered B-cell distribution, increased levels of IgE and IgG, and splenic toxicity, but the
implications of these effects on allergy are unknown (Park et al. 2010a; Kim et al. 2014;
Sheng et al. 2014). Similar immune effects have been observed following systemic
administration of various metal nanomaterials. Although most current uses for metal
nanomaterials are not likely to result in systemic exposures, some nanomaterials with
expanding biomedical applications present a concern. The significance of this knowledge
gap is demonstrated by the numerous adverse effects in patients administered Feraheme
(ferumoxytol), an intravenously-administered iron replacement product containing 17-31
nm colloidal Fe304NP (Lu et al. 2010). In the 5 years following approval for use by the
Food and Drug Administration (FDA) in 2009, 79 anaphylactic reactions were reported, of
which 19 were fatal.
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As more studies are conducted to advance our understanding of the effects of metal
nanomaterials on allergic disease, it should be recognized that accurate assessment is
dependent on the evaluation of sample contamination with endotoxin (Dobrovolskaia et al.
2009a). As a result of production and handling in non-sterile conditions, engineered
nanomaterials are often carriers of impurities including LPS, a potent immunoadjuvant
(Smulders et al. 2012). Accordingly, the presence of endotoxin on surfaces of metal
nanomaterials could generate a subsidiary but sufficient amount of immunostimulation
required to induce allergic sensitization to the metal itself, or to other allergens.
Consequently, exposure to immunologically inert metal nanomaterials contaminated with
LPS may lead to misidentification of such agents as sensitizers or adjuvants. Many of the
studies published prior to this development do not report the presence or absence of
endotoxin in samples, and results should be interpreted with caution.

Another consideration for future studies is that the successful correlation of metal
nanomaterial physicochemical properties with mechanisms of toxicity is limited by the
accurate assessment and reporting of test material characterization. Although thorough
material character-ization has become recognized as an indispensable step in nanotoxicity
studies, discrepancies in property terminology, evaluation methods, property reporting, and
the biological relevance of measured properties complicate comparisons between studies. A
notable example of inconsistent property terminology is the tendency for non-discriminate
reporting of aggregates and agglomerates of primary particles. The irreversible bonds of
aggregates and reversible bonds of agglomerates can impact the effective dose surface area,
degree of primary particle dissociation, and other properties that dictate /n vivo biological
effects (Keene and Tyner 2011; Gualtieri et al. 2012; Sharma et al. 2014). Another property
subject to inconsistent reporting is nanomaterial surface area. Differences in the material
state and method of assessment can generate results representative of different parameters,
including volume-specific, geometric, or specific surface area SSA (van Doren et al. 2011;
Wohlleben et al. 2017). Although these metrics are often similarly reported by studies, they
have been correlated to notable variations in toxic potential (Sager et al. 2016). The use of
multiple assessment methods and disclosure of potential sources of measurement variation
between studies will help accurately compare the impact of properties on toxic potential in
future studies.

Accurate evaluation of nanomaterial physicochemical properties and their correlation to
toxic effects has become increasingly relevant as emerging nanomaterials challenge the
efficacy of traditional occupational exposure limits (OEL). The majority of respiratory
occupational exposure limits do not discriminate for material size, so as new metal-based
nanomaterials emerge, they are subject to the same mass-derived values enforced for other
materials of the same elemental compaosition. This issue is proving problematic as
nanotoxicity studies continue to demonstrate that mass may not be the best dose metric for
prediction of pulmonary toxicity (Schmid and Stoeger 2016). Moreover, as demonstrated by
the studies summarized here, metal nanomaterial properties other than mass have been
correlated to immune effects following respiratory exposure. Accordingly, size nonspecific
OELs may be ineffective in protecting workers from both nanomaterial-induced pulmonary
effects, as well as subsequent immune effects (Schulte et al. 2010). This concern has become
increasingly recognized, as NIOSH has recommended size-specific exposure limits for TiO,.
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Despite the recommended time-weighted average exposure limits of 2.4 mg/m3 for fine TiO,
and 0.3 mg/m3 for ultrafine and nanoscale TiO,, the agency responsible for regulating
compliance with its own established limits(i.e. OSHA) has not yet adopted size-specific
OEL values for TiO, (NIOSH 2011).

Conclusions

Although there is a growing amount of toxicological data demonstrating the vast potential
for adverse immune effects following exposure to metal nanomaterials, advancements in
understanding their interactions with biological systems have allowed for their unique
characteristics to be harnessed for beneficial applications, as well. Numerous studies have
demonstrated the potential utility of metal nanomaterials for novel vaccine adjuvants, drug
delivery vehicles, diagnostic approaches, and immunotherapies. However, to optimize the
use of metal-based nanomaterials for these and other advantageous purposes, a more
complete understanding of their systemic immune effects, mechanisms of
immunomodulation, and capacity to induce allergic sensitization is needed.
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Figure 1.
Different morphologies of nanomaterials are shown: (a) graphene sheets, (b) silver

nanoparticles, (c) silver nanowires, (d) gold nanorods, (e) gold nanoparticles, (f) nickel
oxide nanoparticles, and (g) copper oxide nanoparticles.
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Figure 3.
Potential adverse outcomes with respect to the sensitization and elicitation phases of allergy

following exposure to immunotoxic agents. Adjuvant effects resulting from exposure prior
to allergen sensitization can manifest as increased susceptibility to sensitization. Exposure
concurrent to sensitization may lower the threshold of allergen exposure required to induce
sensitization. Following sensitization to allergen, exposure to an immunotoxic agent either in
the absence or presence of allergen may result in a lower threshold of exposure required to
induce elicitation reactions or increased severity of elicitation symptoms. These effects may
further increase susceptibility to elicitation reactions as result of physiological alterations
such as compromised skin barrier integrity. Furthermore, isolated exposure to immunotoxic
agents or concurrent to allergens in established allergic disease conditions may also
contribute to the progression of chronic effects, such as airway remodeling, which can also
further contribute to elicitation reactions.
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